SPECIAL REPORT

W22 G. J. STANDER and Co-workers. A survey of river pollution in the Witwatersrand catchment area of the Vaal River

NATIONAL INSTITUTE FOR WATER RESEARCH
COUNCIL FOR SCIENTIFIC AND INDUSTRIAL RESEARCH
CS1R Special Report W22, pp. 1-83, UDC 628.19(282.1), Pretoria, South Africa, November, 1963

CONTENTS

]	Page
INTRODUCTION	•• •••	• • • •		1
OBJECTIVES	••	•••	• • •	2
CHAPTER ONE				
DESCRIPTION OF CATCHMENT AREA	•• •••	• • •		4
General	••			4
Area and physical features		• • •		4
Drainage		***		6
METHODS OF IMPLEMENTING THE SURVEYS	• • • • •	• • •	• • •	7
Analytical methods		• • •		8
Physical measurements	•• •••	• • •		9
Flow measurements at selected por	ints	• • •	• • •	9
Recording daily rainfall figures	* • •	•••	• • •	10
Estimation of mineral load	•• •••	• • •	• • •	10
Preliminary investigation of natu	ural vleis	• • •	• • •	13
Daily analysis of tap water	••	• • •	• • •	14
Presentation of results		• • •	• • •	14
CAV DUIDD IUTIU				
CHAPTER TWO				
PRELIMINARY MAPPING SURVEYS	• • • • •	• • •	• • •	15
The upper Klip River and the Klimer (Map no. 1, Sections A and B)	pspruit	•••	• • •	15
General		• • •	• • •	15
Detailed description				15
Discussion	•• •••		•••	22
The Natalspruit, Elsburgspruit, Brakpan and the middle reaches of (Map no. 2, Sections C, D, CC and	f the Klip	River.		24
General		•••	•••	24
Detailed description	** ***	• • •	• • •	24
Discussion				30

	<u> 1</u>	age.
The Blesbokspruit and its tributaries in the Spriarea, the Nigel-Heidelberg area and the Suikerbos rand and lower Klip River from Jackson's Drift to Vereeniging. (Map no. 3, Sections E, F, G and AA)	ch-	32
General	• • •	32
Detailed description		32
Discussion	•••	37
The lower Klip River and the Vereeniging area (Map no. 4, Section AA).	•••	38
General	•••	38
Detailed description		38
Discussion	•••	40
DISCUSSION OF THE RESULTS OF THE PRELIMINARY SURVEY		41
CHAPTER THREE QUANTITATIVE SURVEY OF THE KLIP RIVER AND THE NATALSPRUI AND THEIR TRIBUTARIES (Map sections A, B, AA, C, D and CC) (Tables 5 to 17 and diagrams 1 to 13)	T 	43
The Klip River at Vereeniging (Map no. 4, sampling point AA4c)	•••	43
The Klip River - Natalspruit confluence (Map no. 2, sampling points AAla, AAlb, AAlc)	• • •	45
Comparison of Klip River at point AAlc with Klip at point AA4c (Maps nos. 2 and 4 respectively)	River	46
The Klip River above the Natalspruit confluence (Map no. 1).	• • •	47
Natalspruit before confluence with the Klip River (Map no. 2)	•	48
DISCUSSION OF THE RESULTS OF THE QUANTITATIVE SURVEY OF KLIP RIVER AND THE NATALSPRUIT AND THEIR TRIBUTARIES	THE	50
Comparison of the Vaal Dam discharge and the Klip River at its confluence with the Vaal River	•••	50
Mineral pollution	•••	52

QUANTITATIVE /.....

, care,	<u>Page</u>
QUANTITATIVE SURVEY OF THE SUIKERBOSCHRAND RIVER, ITS TRIBU- TARIES, THE BLESBOKSPRUIT, THE SMALL BLESBOKSPRUIT AND THE UPPER TRIBUTARY OF THE BLESBOKSPRUIT (Maps nos. 3 and 4, sections E, F and G).	54
The Suikerboschrand River at Vereeniging (Map no. 4, sampling point G18a).	54
The Suikerboschrand River before confluence with the Blesbokspruit (Map no. 3, sampling point G17b)	55
The Blesbokspruit in the Heidelberg area before confluence with the Suikerboschrand River (Map no. 3, sampling points GlOa, GlIb, Gl5a, Gl5b and Gl5c).	56
The Vlakfontein stream at Nigel (Map no. 3, sampling points Flc, Glc, G2c, G4c, G5a, G8a, G8d and G9c).	57
The small Blesbokspruit in the Springs area (Map no. 3, sampling points F2b, F3b and F4c)	58
The Blesbokspruit and Upper tributary confluence (Map no. 3, sampling points ElOc, Ellb and Ellc)	58
DISCUSSION OF THE RESULTS OF THE QUANTITATIVE SURVEY OF THE SUIKERBOSCHRAND RIVER SYSTEM	59
Comparison of the Vaal Dam discharge and the Suiker- boschrand River at its confluence with the Vaal River	59
Mineral pollution	61
CHAPTER FOUR	
THE TOTAL EFFECT OF EXCESS MINERAL LOAD CONTRIBUTIONS OF THE KLIP RIVER AND THE SUIKERBOSCHRAND RIVER SYSTEMS ON THE VAAL RIVER WATER AS SUPPLIED TO THE CONSUMER ON THE WITWATERSRAND	64
The effect of total excess mineral and hardness loads	04
on the Vaal River water	64
The effect on the water supply to the Witwatersrand	65
The effect on water uses in the Witwatersrand	66
Observations and discussion of the effects	70
CONCLUSIONS	73
RECOMMENDATIONS	76
CO-WORKERS	79

								Page
ACKNOWLEDGEMEN	rs	• • •	•••	• • •	• • •	•••	• • •	79
REFERENCES	• • • • • • •	• • •	• • •	•••	•••	•••	•••	80
ALPHABETICAL I	NDEX	• • •	•••	•••	•••	•••	• • •	81
TABLES, FIGURES AND DIAGRAMS								
Bound together at back of text with separate page numbers.								
MAPS								

At back of Tables and Figures.

SYNOPSIS

A preliminary mapping survey of that portion of the Witwatersrand catchment area which drains into the Vaal River was followed by an extensive quantitative survey of regular and accumulated mineral loads carried by streams as a result of industrial mining and sewage activities. The effects on water supplied to the Witwatersrand consumer, were investigated.

The results reveal that although most of the tributaries of the Vaal River in this area arise as streams of exceptional purity, they become heavily contaminated within a few miles of their sources, and carry mineral loads far in excess of those expected from natural sources. These mineral loads reach alarming proportions in the rainy season when mineral salts which have accumulated in mining areas during the dry season contaminate the run-off waters and when irregular discharges of large volumes of slimes dam penstock water occur

The pollution of streams has a marked effect on the quality of the water supplied to the Witwatersrand consumer and it is shown that industry, agriculture and the general economy are all directly or indirectly affected.

It is recommended that a programme of pollution abatement by quality control be drawn up in close consultation with all major bodies involved and that the possibility of abatement by storage, diversion and controlled discharge of streams be investigated.

SAMEVATTING

'n Voorlopige karteer-opname van die deel van die opvanggebied van die Witwatersrand wat in die Vaalrivier dreineer, word deur 'n uitgebreide kwantitatiewe opname gevolg. Die hoeveelhede gereelde en opgehoopte minerale ladings as gevolg van nywerheids-, myn- en rioolbedrywighede asook hul gesamentlike uitwerking op die watervoorsiening aan die Witwatersrandse verbruiker, is ondersoek.

Die resultate toon dat alhoewel meeste van die sy-strome van die Vaalrivier in hierdie gebied as strome van buitengewone suiwerheid begin, hulle baie gou swaar besoedel word binne 'n paar myl van hulle oorspronge en veel groter minerale ladings dra as dié wat volg op natuurlike oorsake. Hierdie minerale ladings bereik onstellende afmetings in die reënseisoen wanneer minerale soute, wat gedurende die droë seisoen in myngebiede opgebou het, die vloedwaters besoedel en wanneer slykdamwaters onreëlmatig in groot hoeveelhede in riviere uitgestort word.

Die besoedeling van die strome het 'n merkbare invloed op die gehalte van die water wat aan die Witvatersrandse verbruiker verskaf word terwyl dit getoon word dat die nywerheid, landbou en die algemene ekonomie almal regstreeks of onregstreeks geraak word.

Dit word aan die hand gedoen dat 'n program van besoedelingsbestryding deur beheer oor kwaliteit opgestel word in noue samewerking met alle groot belanghebbendes en dat die moontlikheid van bestryding deur opgaring, verlegging en beheerde uitvloei van strome, ondersoek word.

SURVEY OF RIVER POLLUTION IN THE WITWATERSRAND AREA OF THE VAAL RIVER.

INTRODUCTION

On 27th October, 1950, a special meeting of the Advisory Sub-Committee on Water Treatment of the Council for Scientific and Industrial Research was held to discuss the suggestion that a survey should be made of the Klip and Suikerboschrand Rivers and their tributaries, which drain the industrialized areas of the Witwatersrand and flow into the Vaal River.

The Committee approved the project and a preliminary, general mapping survey of the area was initiated. This was followed by a detailed quantitative investigation to obtain a rough estimate of the extent of pollution from existing and potential sources such as sewage disposal works, mining properties and secondary industries.

This report is an abstract of the most important information contained in the main reports (parts I to VII) on the investigation.

OBJECTIVES/.....

OBJECTIVES

After the completion of the preliminary survey, a meeting of the Special Committee for Stream Surveys in the Witwatersrand Area was held on 22nd February, 1952, and a survey programme was approved which incorporated the following objectives:-

- (a) to examine all effluents draining into the streams under investigation in order to evaluate mineral pollution quantitatively;
- (b) to investigate natural springs and other forms of natural flow, and their influence on the extent of pollution; and
- (c) to recommend ways and means of improving the quality of the streams.

In pursuance of recommendations made by the Committee, representations were made to interested parties for financial assistance, but these were unsuccessful. The Chamber of Mines, however, decided to undertake an investigation into effluents from gold mines and selected the West Rand area between Luipaardsvlei and Welverdiend station for a detailed survey of river pollution of streams draining into the Mooi River. In terms of a contract agreement, the Council for Scientific and Industrial Research acted in a consultative capacity in respect of the work which was in progress and carried out the survey for that part of the Witwatersrand area which drains into the Vaal River upstream of Vereeniging. In consequence of the Chamber's action, objective (a) above was achieved as far as mine effluents were concerned. As these results are of a confidential nature, the data are not included in this report. It can nevertheless be stated that this work contributed greatly towards the achievement of objective (c) above.

Since extra funds could not be obtained, the project was undertaken with such existing staff as could be assigned to it, and it was found necessary to alter objectives to the following:-

- (d) to obtain a quantitative picture of the mineral loads carried at various points by the streams during the wet and dry seasons of the year and during specific periods of time; and
- (e) to evaluate the effects of these mineral loads on the Vaal
 River and on the quality of water supplied to the Witwatersrand area.

C. H A P T E R /.....

CHAPTER ONE

DESCRIPTION OF THE CATCHMENT AREA

General

The catchment area dealt with in this report lies in the province of the Transvaal, South Africa, between latitudes 26°5' and 26°45' and longitudes 27°45' and 28°30', and is commonly referred to as the Witwatersrand.

Area and physical features

The country represented on Map no. 5 embraces an area extending some 45 miles from east to west and 35 miles from north to south, or about 1,600 square miles.

The gold mining and associated industries are restricted chiefly to a zone about 10 miles wide extending along the northern boundary of the This zone follows approximately the line of outcrop of the Main Reef and lies to the south of the main ridge of the Rand. The southern slopes of the ridge, which are drained by the Klip and Suikerboschrand Rivers are gentle and impart little erosive power to the drainage in Johannesburg, the centre of the goldmining industry, occupies a position midway between the east and west extensions of the gold-bearing reefs. Krugersdorp, Lewisham and Roodepoort lie to the west of Johannesburg, and Boksburg, Benoni, Springs, Brakpan and Nigel, all gold-mining towns, to The towns of Heidelberg and Balfour lie to the south-east of the area while Grasmere is located near the south-western corner. Vereeniging, which is a coal-producing area, occupies a position to the extreme south of the area.

The Witwatersrand forms part of the Transvaal 'High Veld'. It has a general elevation of 5,000 feet above sea level, with extreme elevations of 6,000 feet in the vicinities of Johannesburg and Heidelberg.

The Witwatersrand ridge constitutes part of the principal watershed of South Africa. This watershed, known as the Griqualand-Transvaal axis of uplift, traverses the country just to the north of Johannesburg. This crustal deformation feature is responsible for the separation of the drainage basins of the Vaal and Limpopo River systems. The Vaal River drains the southern slopes of the high veld and flows into the Atlantic Ocean after joining the Orange River near Kimberley. The Limpopo River drains the northern slopes and flows into the Indian Ocean. The main water divide in the Witwatersrand area coincides with the highest portion of the Witwatersrand and passes through the centre of Johannesburg.

The elevated hilly country between Krugersdorp in the west and Germiston in the east, is the dominating physical feature of the whole area. To the east of Germiston, towards Brakpan and Nigel, the weather-resistant Witwatersrand formations are overlain by horizontally disposed Karroo rocks. These formations are less resistant to weathering than are the Witwatersrand rocks, and easily break down into sandy surface drift and soils which give rise to broad, gently sloping undulations referred to as 'bulte'.

This eastern section of the area, covered by generally elevated Karroo formations, is traversed from north to south by a shallow depression forming the broad featureless valley of the Blesbokspruit. Denudation of the thin Karroo sediments by the Blesbokspruit has exposed the underlying dolomites and Kimberley shales for some 20 miles along its course.

1

'To the south of Johannesburg the high ground formed mainly by rocks of the Witwatersrand system, includes in its southern margin a fairly high

range known as the Kliprivierberg, which represents the edge of the mass of volcanic rocks usually referred to as the Klipriver amygdaloid. In a southerly direction from the Kliprivierberg, the country opens up into a low and wide expanse occupied by Karroo sediments and dolomites. The comparatively low dolomite areas usually produce featureless grass-covered country. To the south-east and the south-west of the area high grounds are again encountered, composed mainly of Ventersdorp lava and rocks of the Pretoria series respectively. In the vicinity of Heidelberg the incision of deep valleys gives the area a rather mountainous character. The escarpments of Pretoria quartzites found in the south-west give rise to a type of country characteristic of these formations, as is evidenced by the numerous roughly parallel ridges and valleys corresponding with the alterations of quartzite and shale of which the Pretoria series is largely composed.

Drainage

The Vaal River and its tributaries drain the whole area. The principal tributaries are the Klip River and its tributaries, the Klipspruit, Natalspruit, Elsburgspruit and the Rietspruit, and the Suikerboschrand River, with its tributary the Blesbokspruit, which is the main stream draining the East Rand.

The Blesbokspruit is re-excavating a pre-Karroo valley and roughly follows a belt of Kimberley shales in its lower stretches where it meanders in broad alluvial flats.

The Klip River and the Klipspruit together drain the west Witwatersrand area around Lewisham and Roodepoort. The Natalspruit drains the
country immediately to the south-east of Johannesburg. From its gathering
grounds in the Kliprivierberg, the Klip River flows southwards to join the
Vaal River near Vereeniging only about two miles distant from the confluence
of the Suikerboschrand and Vaal Rivers.

Although the Klip River and its tributaries invariably originate over formations of the upper Witwatersrand and Ventersdorp systems, they flow mainly over formations belonging to the Karroo system and dolomites of the Transvaal system. The Blesbokspruit arises and flows mainly over Karroo system rocks and dolomites.

Springs are abundant in the area and, apart from contributing considerable amounts of high quality water to the various streams, are extensively used by farmers for irrigation and agricultural purposes.

METHODS OF IMPLEMENTING THE SURVEYS

In the preliminary survey the course of each river was reconnoitred and points of possible pollution and contamination were marked on the appropriate maps. Local and mining authorities and plant managers were approached about the areas under their jurisdiction in an endeavour to trace all sources of pollution. Samples for chemical analysis were collected at various points along the rivers and streams, including all points at which there were suspect seepages and effluents that might have access to the rivers. The points at which samples were taken are represented on the relevant maps by the reference numbers used to identify the respective analysis values in the figures and tables.

For the sake of brevity, the various rivers were subdivided into sections denoted by the alphabetical symbols shown below:

Map	Secti o n	River section
	[A	Upper Klip River - from origin at Lewisham to Jackson's Drift.
1	B	Klipspruit - the entire tributary of the Klip River.

Map	Section	River section
2 and 4 [AA	Lower Klip River - from Jackson's Drift to Vereeniging.
[_ C	Natalspruit - from origin to confluence with Klip River.
2	D T	Elsburgspruit - from origin to confluence with Natalspruit.
- Innered Civilian	CC	Rietspruit - from origin in Brakpan to confluence with Natalspruit.
[E	Upper tributary of the Blesbokspruit in the Benoni area.
ا ر—ار—ار—ار	· · F	Blesbokspruit and Small Blesbokspruit in the Springs area.
3 [G .	Blesbokspruit in the Nigel-Heidelberg area.

Analytical methods

The chemical analysis included the following parameters: pH value; conductivity in micro-mhos; total dissolved solids (TDS); suspended solids; mixed oxides of iron and aluminium; total hardness (TH); chlorides; sulphates; oxygen consumed in four hours from N/80 KMnO₄ (i.e. OA); and alkalinity. The results are all expressed in parts per million except where otherwise stated.

Except in the cases of total hardness and sulphate determinations, the methods used have been those described in Standard Methods for the Examination of Water and Sewage. 8

For the total hardness determinations, modification of the Schwarzenbach method was used in which the calcium and magnesium ions are titrated against a standard solution of ethylene diamine-tetra-acetate, using eriochrome black-t as indicator.

Sulphates were determined by using a Cambridge photo-electric 10 turbidimeter, and a modified method of V. Zahn and R.T. Sheen and others.

Physical measurements

In addition to the chemical analyses, the detailed quantitative investigation included the following functions which are discussed further below:

flow measurements at selected sampling points;

recording of daily rainfall figures,

estimation of mineral load from analyses and flow data,

a preliminary investigation of natural vleis and their influence on the extent of pollution, and

daily analysis of tap water from a selected point.

Flow measurements at selected points (See Maps nos 1, 2, 3 and 4)

The Department of Water Affairs erected 29 gauging stations, of which nine were supplied with permanent weir structures; the Department prepared discharge tables for these weir stations. The remaining stations were calibrated by flow-meter technique. Daily, weekly or bi-weekly gauge readings were made at all stations.

Flow readings of the Klip and Suikerboschrand Rivers at Vereeniging were obtained from the Rand Water Board which maintains two recording weirs at these sites. Owing to the frequent silting up of the bed of the stream

with sand at a number of gauging places some recordings were of doubtful value, particularly during the rainy season.

Recording of daily rainfall figures

Thirty nine rainfall stations on the Reef were selected, and records were made of the daily rainfall at these stations from figures supplied by the Weather Eureau in the form of monthly returns.

Estimation of mineral load from analyses and flow data

These values were calculated for the most important points in the area from flow gaugings and total dissolved solids (TDS) determinations.

(a) Dry weather flow:

Any measurement (in cusecs) made during the normal dry months (May-October) is taken as dry weather flow. The average of these measurements is the average dry weather flow.

(b) Wet weather flow:

Any flow measurement (in cusecs) made at any time during the rainy season (November-April) or any other rainy period (e.g. out-of-season rain) is regarded as a wet weather flow.

(c) Run-off flow:

The difference between (b) and (a). This includes surface and sub-surface flows and increased flows from springs during the rainy season.

(d) Observed total dissolved mineral load:

Total dissolved solids x flow in cusecs x 5.38 = TOTAL MINERAL LOAD in 1b/24 hours.

(e) Natural dissolved mineral load:

This is the mineral load which would be carried in solution if the observed flows were not contaminated by unnatural mineral salt discharges, i.e. flow x average TDS of RUN-OFF FLOWS (100 ppm) x 5.38 = 1bs/24 hours.

(f) Expected dissolved mineral load:

For the area under investigation run-off resulting from rainfall or springs (Table 4) carries a Natural Total Dissolved Solid concentration (TDS) varying between 25 and 146 ppm. and the dissolved mineral salts carried in these waters constitute the NATURAL MINERAL LOAD. Therefore if run-off (surface or sub-surface and increased spring flow) from rainfall reaches a stream carrying a DRY WEATHER FLOW (of whatever origin, e.g. sewage, or mine effluent or spring water) the TDS of the resultant flow decreases in proportion to the dilution afforded by the run-off having a NATURAL TDS of 25 to 146 ppm (average approximately 100 ppm) but the TOTAL DISSOLVED MINERAL LOAD contributed by the whole flow increases, the increase being the mineral load dissolved in the RUN-OFF water (difference between an observed WET WEATHER FLOW and the AVERAGE DRY WEATHER FLOW). From the foregoing therefore, the EXPECTED MINERAL LOAD at any time during a wet season is the sum of the average dry weather OBSERVED TOTAL MINERAL LOAD (AVERAGE DRY WEATHER FLOW imes AVERAGE DRY WEATHER TDS) and the NATURAL MINERAL LOAD contributed by the RUN-OFF FLOW. Towards the end of April (i.e. beginning of dry season) the flow in the main streams drops rapidly and remains fairly uniform except towards the end of the dry season when much water is pumped for irrigation and effluent discharges decrease. The dry season flow consists of normal spring flows and regular effluent discharges (mine water pumped from underground slimes dam penstock water, reduction works effluent and seepages from slimes dams and rock dumps); run-off flow becomes negligible. During the dry season, therefore, the mineral load contributed by RUN-OFF disappears and there is consequently no necessity for calculating the EXPECTED MINERAL MAD for this period; the streams carry a dry-weather OBSERVED TOTAL MINERAL LOAD only.

(g) Accumulated dissolved mineral load:

During the rainy season, run-off water is contaminated with mineral salts derived from slimes dams and sand dumps. Erosion of slimes dams and sand dumps, and the oxidation of pyritic material to sulphuric acid and iron sulphate with the concomitant leaching of salts from mineral material, are the main sources of pollution resulting from mining activity. The discharge of large volumes of slimes dam penstock water during rainy periods is another source of heavy mineral pollution. Areas under irrigation also contribute mineral salts during rainy periods. Two important phenomena are observed when these run-off waters reach streams carrying dry season flows (natural springs and regular effluent discharges):

- (i) The Total Dissolved Solids of the resultant flow do not decrease materially and in proportion to the dilution afforded by the run-off.
- (ii) The observed total mineral load exceeds the expected mineral load. The difference between the former and the latter represents the accumulated mineral salts which have been leached from the soil, and/or dissolved solids in slimes dam waters which have been discharged irregularly as effluent during storms or wet weather. This load is designated as ACCUMULATED MINERAL LOAD.

(h) Total excess dissolved mineral load:

The difference between the observed total dissolved mineral load and the natural dissolved mineral load represents the total addition of soluble mineral salts from unnatural sources (no allowance being made for increase due to evaporation). This figure is called MICESS MINERAL LOAD and represents the ACCUMULATED MINERAL LOAD and the MINERAL LOAD FROM REGULAR EFFLUENT DISCHARGES.

A Preliminary Investigation of Natural Vleis

Natural vleis in the water courses of the Witwatersrand have been found to constitute important purification barriers:

The Olifantsvlei, which is one of the most important of these vleis in the Witwatersrand area, was the subject of a separate investigation carried out by the NIWR. The results of the ecological studies on the Olifantsvlei were published in a NIWR report³, and will not be dealt with in detail in this report.

The salient characteristics are given in the following summary.

It has been noted in the chemical survey that the polluted waters of the Klip River and the Klipspruit were considerably improved after passing through the Olifantsvlei. The ecological studies were undertaken to determine more accurately the effects of the vlei on the polluted waters, to find out what part, 'the different regions of the vlei were playing in this purification, to work out the biology of the various regions and, if possible, to gain some idea of the processes taking place.

From the survey it became apparent that the vlei possesses an extraordinary power of self-purification (maturation process) and is capable of dealing with a complicated set of polluting factors more efficiently than a river.

Three main types of pollution were present in streams entering the vlei: mineral—acid pollution; organic pollution; and bacterial pollution by organisms of faecal origin. All three types of pollution were removed to some extent.

The acid is neutralized by the underlying dolomite. However, the vlei cannot deal with the larger volume of acid water pouring in during the rainy season and the acid is then neutralized lower down the Klip River.

There was very little free organic matter present in the Klipspruit by the time it reached the upper arm of the vlei, but there was still a fair amount of saline ammonia and nitrates originating from the Klipspruit Sewage Works. The vlei dealt with most of the ammonia nitrogen and the nitrate nitrogen by the time the water reached the outlet.

Bacterial purification was marked. The Klipspruit carries mainly bacteria of faecal or possible faecal origin from the sewage works effluent, but also saprophytic and soil bacteria, the latter particularly during the rainy season. All these types showed marked reduction, though there was evidence of incidental faecal pollution (bird and animal life) in the vlei itself which was masking an otherwise efficient removal. The increase of saprophytic bacteria again in the lower parts of the vlei was probably due to the fact that this deeper area contains large amounts of decaying vegetable matter.

Daily analysis of tap water

In order to evaluate the extent to which mineral pollution affects the water supply to the Witwatersrand, daily samples of tap water were analysed over a period of 18 months.

Presentation of results

The chemical analysis figures of the preliminary survey are given in Tables 1, 2 and 3.

CHAPTER TWO/.....

CHAPTER TWO

PRELIMINARY MAPPING SURVEY

The upper Klip River and the Klipspruit

(See Map no. 1, sections A and B)

General

The Klipspruit and the Klip River, into which the Klipspruit flows about ten miles from its source, together with a number of tributaries of both these rivers, all arise in the range of hills running east-west from Lewisham to central Johannesburg. The area is characterized by large numbers of springs, whose waters are of a very high quality. A second important source of water here is run-off from mining properties. Some of this mine water is pumped from underground and the quality of nearly all of it leaves much to be desired, as it is acidic and has a very high salinity. The effects of this contamination by mine waters in this area are lessened to some extent by dilution due to water from springs and also to effluent from sewage disposal works. (Analytical results are given in Table 1).

Detailed description

The source of the Klip River is a spring at Lewisham. This water is immediately contaminated by run-off water from the East-Champ D'Or mine (Pollution point Pl), which has a total dissolved solids (TDS) concentration of over 10,000ppm. The combined stream below the mine has a pH of 3.1 and TDS concentration of over 4,000ppm. Approximately five miles downstream (P2) the pH is 3.2, but the TDS concentration has decreased to 500ppm, owing to dilution by springs along the course. The water is crystal clear, but there are no signs of aquatic life. Mine sand has penetrated the bed of

the stream for a distance of about two miles; a small dam then prevents further penetration.

The Klip River is now joined by a rather faster-flowing tributary with two main branches, the first coming from Roodepoort West and the second flowing westward through the Durban-Roodepoort Deep Mine property.

The Roodepoort West stream, despite some organic pollution from the Roodepoort location, is of a good chemical quality until it reaches the lower of two dams where a small stream, originating in Roodepoort and passing through a disused mine dump area (P3), enters the dam. An immediate increase in TDS of the dam is noticed. This is due mainly to increased hardness. Approximately three-quarters of a mile below this dam a second highly contaminated run-off enters the stream. This arises due west of Roodepoort in the vicinity of old slimes dams (P4). The total dissolved solids concentration of this water is over 2,000ppm and the area appears to be a very bad source of contamination, particularly during heavy rains, since no provision is made to prevent mine sand or contaminated water from entering the main stream.

The stream from the Durban-Roodepoort Deep Mine (P5) is of very poor quality, having a TDS concentration of over 2,000ppm. water here varies considerably, as the mine has a lime-treatment plant (P6) situated about half a mile above the confluence of this stream and the stream from Roodepoort West. A pH of 11.7 was recorded immediately below the treatment plant on one occasion. A heavy precipitate of ferrous hydroxide forms in the stream and is deposited in quiescent pools. principal constituents of these mine waters are ferrous iron, calcium, and magnesium chlorides and sulphates, particularly sulphates. Sulphates (SO_4) in concentrations of over 1,000ppm are the rule, while concentrations of over 2,000ppm are quite common. Not much mine sand finds its way down this stream as a rule, because sedimentation takes place in three dams situated above the lime-treatment plant. A sewage effluent of unknown

quality enters the stream above the lime-treatment plant, while a second sewage disposal works (P7) discharges partially treated sewage with an oxygen demand (OA, i.e. oxygen absorbed from N/80 KMnO₄ in 4 hours) of from 60 to 70ppm. By dilution this value soon falls to less than 20ppm.

Below the confluence of the Klip River and the stream from Roodepoort West, and the Durban-Roodepoort Deep Mine, there are no further sources of pollution or contamination for about twelve miles, and the Klip River flows through pastoral and agricultural countryside. The water of the river (P8) is of poor chemical quality and its use is limited owing to its low pH of 3 to 4 and the high TDS concentration of 1,000 to 2,000ppm. Dilution by spring water does, however, result in decrease of salinity. Market gardening in the area is mainly dependent for water supply on the numerous springs and small tributaries, and not on the river itself.

The next major source of pollution of the Klip River is the Klipspruit (Map no. 1, section 'B').

The Klipspruit has a number of tributaries of about equal importance as far as flow and the incidence of pollution and contamination are concerned. The main stream arises in the storm-water drains of Johannesburg (P9) in the vicinity of the Johannesburg market and the suburb of Vrededorp.

Somewhere in this vicinity one of the city's sewers was faulty and as a result sewage, on occasion, entered the storm-water system. A snap sample of the contents of one of these drains had an OA of 1,290ppm; another had an OA of 89ppm. Dilution by incoming drains reduces these values to about 70ppm in the vicinity of the municipal tar plant in Booysens (P11). A fairly large drain discharges mining waste water and seepage water from the Robinson Deep Mine sand dumps (P10) into the main stream just above this tar plant. The TDS concentration of the mein stream at the tar plant is high, namely about 1,000ppm.

A canalized stream coming from the direction of the Turffontein golf course (Pl2) joins the main stream immediately below the tar plant.

This stream is badly polluted, having an OA of approximately 40ppm, and a TDS concentration of over 3,000ppm; the latter consists mainly of calcium and magnesium sulphates, which probably originate from factories next to the stream. (This matter was being investigated by the Johannesburg municipality).

About 300 yards below the junctions of these two streams, a canalized stream discharges seepage water from slimes dams lying to the south of Robertsham (P13). This water has a pH of 6 and a TDS concentration of over 2,000, due mainly to calcium and magnesium sulphates which cause permanent hardness.

The Klipspruit here flows through the Crown Mines area. Here stormwater run-off from slimes dams and sand dumps has direct access to the river, which is heavily silted up in consequence.

Approximately 200 yards above the upper Concordia Dam a considerable flow of contaminated water (with a pH of 6 to 7 and TDS concentration of over 1,500ppm) coming from a reduction works (Pl4) on the north bank, enters the river.

The main stream now enters the Concordia Dame. At this point the stream has a pH of 4 to 5 and a TDS concentration of over 2,000ppm. Dilution of the water in the dam is effected by a fairly strongly flowing stream of good chemical quality, which enters the dam from the south. This benefit is counteracted to a large extent, however, by contamination due to run-off from slimes dams (P15) along the north bank of the dams, particularly during heavy rains. The two dams have an important function in that they bring about the sedimentation of mine sand. The effluent from the lower dam contains no suspended solids; the dissolved solids concentration is of course not affected materially, the effluent having a concentration of over 2,000ppm.

The river flows past a further series of slimes dams (P16) which are a potential and actual source of contamination during storms, and, about two miles below the Concordia Dams, discharges into the Canada Dam.

Two other streams also discharge into the Canada Dam. The first arises at Industria (P17), an industrial suburb to the north of Johannesburg; its water quality is reasonable, but highly variable. Sewage effluent from the Antea disposal works at Industria was admitted to the stream until March, 1951. The water is now contaminated as a result of industrial activity, and the Johannesburg Municipality was studying the matter. Before entering the Canada Dam, this stream from Antea is joined by a stream which starts near Maraisburg, as a spring of exceptional purity, but which is contaminated by run-off from mine dumps and slimes dams (P18) all along its course.

During dry weather, however, the chemical quality of the combined streams entering the Canada Dam is reasonable.

A third stream enters the Canada Dam from the west. This water (P19) is heavily contaminated by iron, calcium and magnesium sulphates, having a TDS concentration of over 2,000ppm; organic pollution was also noticed, the source being a mine compound of the Consolidated Main Reef Mine.

The effluent from the Canada Dam, at the time of the survey, was free from suspended matter but had a pH of 4.8, a TDS concentration of over 1,000ppm and zero oxygen demand (OA).

South of the Canada Dam the Klipspruit is joined by a stream of poor quality from the east. This contains sewage effluent, mine water run-off, and seepage from the Crown Mines (P2O). The pH is fairly high 8.8, indicating lime treatment of the mine water; the OA is about 70ppm; and the TDS concentration is over 3.000ppm.

Another important stream, viz the effluent from the Rand Leases Dam, now enters the main stream (the Klipspruit) from the west; the stream has a pH of 8 and TDS concentration of 2,000ppm. The OA is negligible. The principal contaminants are calcium and magnesium sulphates.

The Rand Leases Dam has two main contributing streams. The first arises at the eastern reduction works of the Durban-Roodepoort Deep Mine. It is of poor quality to start with, and before entering the dam it is further contaminated by seepage and rain water run-off from slimes dams (P21) of the

Durban-Roodepoort Deep Mine and the Rand Leases Mine. The TDS concentration is over 2,000ppm and the pH about 7. In addition the stream carries over 5,000ppm suspended solids consisting mainly of mine sand, and the Rand Leases Dam, which serves to prevent this mine sand from getting into streams further down, is heavily silted up in consequence.

The second stream from Florida Lake entering this dam is of a reasonable chemical quality, having a TDS concentration of approximately 400ppm and a pH of 8. Permanent hardness accounts for most of this salinity which is mainly derived from sand-dump seepage (P22) from south of the Florida Dam. This stream has its origin in a number of springs of exceptional quality situated to the east of Roodepoort and between Florida and Discovery. The conductivity of these spring waters is around 15 micro-mhos. Storm water run-off from Roodepoort, Discovery and Florida, mixes with these spring waters and flows into the Florida Lake and thence into the Rand Leases Dam.

The Klipspruit, having been joined by the stream from the Rand Leases Dam, now flows through the Orlando Bantu township, where it is further polluted, particularly during rain storms. Just south of this township the Orlando Power Station Dam (F23) overflows into the Klipsprut. This dam provides cooling water for the power station. It is fed by two small streams of good chemical quality and by approximately 2 million gallons per day of high grade, sand-filtered sewage effluent from the Klipspruit sewage disposal works (P24). The use of this sewage effluent for power-station cooling water is one of our best examples of the re-use of water for industrial purposes. During normal weather there is no overflow from this dam, but the flow of water into the Klipspruit is maintained as a result of the ash disposal system in use at the station. The quenched ash is carried by water to a site below the dam where it is dumped, and the excess water then goes The water has a pH of 7.9 and a TDS concentration on into the Klipspruit. of approximately 800ppm, consisting mainly of calcium and magnesium chlorides and sulphates.

Drainage water, from sewage irrigation on ryegrass fields in the Pimville Bantu township area (P25), enters the Klipspruit a short distance

below the Orlando Power Station Dam stream. The quality of this water can vary enormously, but has in recent years been fairly good. It is usually a stable effluent with an oxygen demand of less than 30 ppm. Nitrates are often present and a nitric nitrogen concentration of as much as 20ppm has been recorded.

A short distance below the point of entry of this sewage effluent, a stream (P26) of good chemical quality enters the Klipspruit from the north-west. The pH is 8.1 and the TDS concentration less than 100ppm. In spite of this dilution, the water of the Klipspruit sampled at the bridge on the Potchefstroom road is still of poor chemical quality, having a pH of 5.9 and a TDS concentration of approximately 2,000ppm. The chemical contaminants are almost exclusively salts which cause permanent hardness.

Just south of the Potchefstroom road, effluent from contact-type biological filters (P27) that treat kitchen waste-water from the Moroka Bantu township, flows into the Klipspruit. The quality of this water is poor and oxygen demands of 30 to 40ppm are not uncommon; but the flow is small. This is the last major source of pollution of the Klipspruit, and about three miles downstream it joins the Klip River, which is now a fairly strongly flowing river.

The Klip River, sampled about a mile below its confluence with the Klipspruit, that is at the bridge on the road to Vanderbijlpark, had a pH of 7.4 and TDS concentration of over 1,500ppm. The high pH appears strange, in view of the acidity of the Klipspruit and Klip River only a few miles upstream. The river at this stage flows very slowly, however, owing to the flat and marshy nature of the countryside, so that changes in chemical quality brought about by rain would take some time to be transmitted downstream. Then, too, spring waters here are alkaline.

Olifantsvlei farm, a Johannesburg municipal sewage disposal farm (P28), is situated along the north bank of the Klip River at this point. The road from Johannesburg to Vanderbijlpark passes through the farm, which for many years has been irrigated with primary settling-tank sewage effluent.

The farm is large and the irrigation well-controlled, so that no run-off of a serious nature is encountered. The Harrington Spruit crosses the farm; its source is just east of the Klipspruit sewage disposal works and it runs westwards through Klipspruit farm (P29) where a certain amount of organic pollution is picked up. Nitrates make their appearance and the OA figure rises from zero to a variable value between 10ppm and 40ppm. The Harrington Spruit then flows southwards into Olifantsvlei farm and from there into the Klip River. During this last stage the chemical composition was found to remain practically unchanged at a pH of about 7.5 and a TDS concentration of about 1,000ppm. The OA was approximately 15ppm, the saline ammonia nitrogen was about 7ppm and there was a trace of albuminoid ammonia nitrogen.

The Klip River now continues to flow through swampy areas (vleis) and a sample taken about a mile and a half downstream (P30), where the Johannesburg-Vereeniging road crosses the river, had a pH of about 7; a TDS concentration of about 900ppm; no nitrate nitrogen and little albuminoid and saline ammonia. The OA was negligible. The decrease in TDS concentration is directly attributable to dilution as this area contains a fairly large number of springs.

Gradual improvement of the Klip River, due principally to dilution, is maintained for the next eight or nine miles until just before its confluence with the Natalspruit (see Map no. 2). Here the pH was 7.9 and the TDS concentration about 800ppm. The increase in pH to 7.9 is due to the alkalinity of some of the ground water in the area, which is in contact with the dolomite series of the Transvaal system and has, according to Bond¹, (p.69), an average pH of 7.9. As a result of the high pH the iron and aluminium content drops to a negligible value, the remaining contaminants being calcium and magnesium sulphates and chlorides.

Discussion

This survey of the upper Klip River and the Klipspruit has indicated that the two rivers, which chart off as springs of exceptional purity, both become so heavily contaminated within a few miles of their sources that they

are rendered unfit for most agricultural and industrial uses.

During dry weather the main sources of contamination are seepage water from slimes dams, sand dumps and regular effluent discharges from mine workings [see page 11, item (f)]. During storms, large quantities of water are involved when storm-water run-off from slimes dams and sand dumps carries with it considerable quantities of salts in solution, and sand and silt in suspension. In this area the problem of mining water is a serious one and warrants a special study, with particular attention to the re-use of water.

Penetration of mine sand into the beds of these two rivers and their tributaries is very serious, since the normal aquatic life has been disturbed and self-purification processes impaired. Fortunately most of this sand is removed by dams in the area, but as these dams are rapidly silting up they will not be effective for very long, unless extensive dredging is carried out.

Of the sewage disposal works encountered, the two Johannesburg municipal works, Klipspruit and Olifantsvlei, are the most important. The effluents which enter the rivers from these are of reasonable quality being limited to run-off and seepage from irrigated land. In fact the sewage effluents reduce salinity, because their total dissolved solids concentrations are generally lower than those of the streams. The Olifantsvlei is an effective pollution barrier which should be protected against the ravages of silt, sand and acid waters.

The Klip River leaves the area covered by this section of the report at Jackson's Drift. Analyses made so far show that the quality of the Klip River water leaves much to be desired, but they do indicate the beneficial effects of dilution and it must be considered fortunate that the Witwatersrand is a fairly well watered region. In more arid parts of South Africa, similarly contaminated streams would stand no chance of recovery by dilution.

The Natalspruit, Elsburgspruit, Rietspruit from Brakpan, and the middle reaches of the Klip River (See Map no. 2, Sections C, D, CC, and a portion of AA)

General

The Natalspruit, Elsburgspruit, and the Rietspruit all arise in an arc along the eastern Witwatersrand. This arc extends from Johannesburg in the west, through Germiston and Boksburg, to a position south of Brakpan in the east. The original sources of the streams in this area have been lost in a maze of mining and industrial effluents as a result of the intensive mining activity and industrial development in the area. Although dilution of these contaminated streams is effected by numerous springs and tributaries to the south, pure unpolluted streams that might serve as diluents are rare in the head-water zones. The analyses of the waters in this area are presented in Table 2.

Detailed description

The Natalspruit, which is the largest stream in the area under discussion, has its source in the storm-water drains of eastern Johannesburg, a predominantly industrial area. At Wolhuter (P31), where these drains emerge into the open, a sample of the water indicated severe mineral and organic pollution. The water had a TDS concentration of over 1,000ppm, and the OA was 62ppm. All along the banks of the river here, we find slimes dams and sand dumps. Seepage water and storm-water run-off have easy access. After passing through one small dam the Natalspruit enters the Rosherville Power Station Dam (P32), which is of considerable size and provides cooling water for the power station. It is also the focal point for two other streams.

The more important of these two streams comes from the Wemmer Pan (P33) to the south-west of Rosherville. The water of this pan is maintained by springs and storm-water run-off from the surrounding suburbs and sand dumps, but the effluent from the pan is of reasonable chemical quality with a TDS concentration of about 550ppm and an OA of 7ppm. The pH of 4, however, is

fairly low. Shortly after leaving the pan, this stream is joined by run-off of poor quality from the direction of the City Deep Mine reduction works (P34). The TDS concentration of this water is over 1,000. Here, too, penstock waters and seepage from slimes dams and sand dumps have direct access to the stream, which is heavily silted up in consequence. This stream crosses the Durban road and enters the Rosherville Tero. Along this section it is canalized and passes close to a large climes dam (P35), from which seepage enters the furrow. This seepage has a TDS concentration of over 2,800ppm and contains over 5,500ppm of suspended solids.

The second stream enters the Rosherville Dam from the north. It also drains a mining area (P36), as is evidenced by a TDS concentration of over 3,000ppm, consisting mainly of calcium and magnesium salts.

The effluent from the Rosherville Dam, the Natalspruit, is of a very poor quality with a pH of 5.3 and TDS concentration of over 2,000ppm. Sand and silt in suspension have, of course, been effectively removed by the dam, but the capacity of this is reduced accordingly.

About a quarter of a mile below the dam the Natalspruit is joined by a steadily flowing stream which enters from the south-west. Along its upper reaches in the Klipriviersberg area (P37) the stream is very clean, but it is contaminated by seepage water from the Wemmer Pan stream, since these two pass very close to each other at one point.

A few hundred yards after crossing the road from Johannesburg to the Rand Airport, the Matalspruit is joined from the north by another badly contaminated stream, with a pH of 3.5 and TDS concentration of over 3,500ppm. This stream arises in the vicinity of Geldenhuis Station (P38), and is maintained by seepage from slimes dams and by storm water drainage. Seepage from one slimes dam in the area had a pH of 4 and TDS concentration of over 4,000ppm consisting mainly of salts responsible for permanent hardness. Sand and silt are removed by a small dam before this stream joins the Natalspruit, which now flows through a gap in the range of hills and enters the town of Alberton.

In Alberton the Natalspruit water has a pH of 3.8 and TDS concentration of over 2,000ppm. Here the river is joined by a small stream (P39) from the west, but this water is of good chemical quality. South of Alberton the Natalspruit enters a marshy valley, and at this point (P40), it is joined by a stream of considerable importance, the Elsburgspruit, with water of variable quality. At the time of sampling it had a pH of 7.2 and TDS concentration of over 1,700ppm.

The Elsburgspruit arises in the vicinity of Delmore Station and drains a large mining area (P41) to the north-east of Germiston. Waste water and seepage water from these mine properties collect in a small dam (P42) next to the main Germiston-Boksburg road, where so much sand and silt have been deposited over the years that the dam is now completely filled. Water pumped from this dam is re-used by the mines but the excess water, which has a pH of 4.6 and TDS concentration of over 3,000ppm, crosses the abovementioned road and enters the Elsburg Dam from the north-west.

A second stream enters the Elsburg Dam from the north-east. area (P43) to the north-west of Boksburg is drained by a furrow which passes through the Comet Deep property and crosses the Germiston-Boksburg road to enter the Angelo Pan (P44). This water is largely made up of effluent and seepage from mining activity and has a pH of about 4.0, a TDS concentration of over 10,000ppm, suspended solids of 11,000ppm and an OA of 450ppm. effluent from the Angelo Pan, which is still acidic, is treated with lime by the mining authorities, and flows into dam 'B'. A second stream enters dam 'B' from the north, and this is also treated with lime since it is an acidic mining effluent with over 3,000ppm dissolved solids. Judging by the smell and appearance of this water, it contains a fairly large proportion of waste water from a compound for Bantu workers (P45) north of the railway Seepage water from dam 'B', at the time of this survey, has a pH of line. 3.5 in spite of the lime treatment.

Dam 'A' (see Map no. 2) also contains mine water, the stream (P46) from north of Angelo Station having a pH of 4.3, and TDS concentration of over 4,000ppm. This stream is joined by another from the west, which is largely compound waste water, with an OA of 50.3ppm.

The combined effluents from dams 'A' and 'B', having a pH of 4.6 and TDS concentrations of over 3,500ppm, flow into the Elsburg Dam, where the The effluent from the dam is remaining sand is removed from suspension. joined at some distance further down-stream by a stream from the west, which originates north of Germiston in the vicinity of the Simmer-and-Jack and the Rose Deep mines (P47). This water, which is almost entirely run-off from mining property, has a pH of 8.5 indicating lime treatment, and TDS concentration of over 3,000ppm, due mainly to calcium and magnesium salts. It enters a storm-water drain and flows into the Victoria Lake (P48), carrying with it approximately 4,000ppm of sand in suspension. This silt load necessitates dredging of the lake, which is silting up rapidly. A second stream of contaminated water enters the lake from the west. This stream drains the area occupied by the southern Simmer-and-Jack slimes dams and sand dumps (P49) and is of extremely poor quality, having a TDS concentration of over The pH of 9.4 indicates lime treatment of the mine water. effect of these contaminated streams on the water of the Victoria Lake is indicated by the state of its overflow water, which has a TDS concentration of 4,000ppm and a pH of about 5.5.

About a mile from the lake the overflow is joined by the Georgetown stream (P50), which originates in Germiston itself and now functions primarily as a storm-water drain. At the time of sampling (dry spell) the water was of fair quality, with a TDS concentration of 600ppm. Nearly two miles further downstream the combined stream joins the Elsburgspruit which is the overflow from the Elsburg Dam.

Immediately to the west of the Elsburg Dam, several morgen of land have for many years been used as a land disposal site (P51) for molasses—slop from a local chemical factory. During dry weather conditions this disposal system does not impose an additional pollution load on the stream below the site, but during storms a considerable quantity of very heavily polluted water finds its way into the Elsburgspruit and constitutes a serious nuisance. This is evident for a considerable time after rain storms because the Elsburgspruit, before joining the Natalspruit, enters a wide, reed—filled swamp and flows very slowly so that septic conditions sometimes prevail.

About a mile to the south of Elsburg town another important stream enters the Elsburgspruit. This is the overflow from the Cinderella Dam (P52) near Boksburg; it has a pH of 4.5, TDS concentration of over 2,000ppm, and OA of 14.8ppm. The main stream, which enters the Cinderella Daw from the north, arises about two miles north-east of Boksburg. It is a clear stream until joined from the east by effluent from a petroleum refinery (P53). This effluent is of extremely variable quality, but a snap sample taken at a time of large flow had a pH of 9.4, a TDS concentration of 1,700ppm and an OA of 504ppm. A short distance below the confluence of this effluent with the stream, the first mining contamination is encountered; the quantity, however, is small during dry weather conditions. The source of this contamination is the East Rand Proprietary Mine (P54), where catchment dams and pumps have been provided in an effort to prevent storm-water run-off from entering the stream and, subsequently, the Boksburg Lake. As far as surface drainage is concerned. these measures are effective in all but the heaviest storms.

During storms the Boksburg Lake (P55) receives, in addition to the mine run-off water and water from the refinery, large quantities of storm-water from Boksburg. This water prevents the TDS concentration of the lake water from rising above 600 to 700ppm. At the time of this survey, the pH was 4.3 and the TDS approximately 500ppm.

About three quarters of a mile below the lake, its effluent enters the Cinderella Dam, which suffers contamination from mining activity along its banks, giving rise to the TDS concentration mentioned earlier, of over 2,000ppm.

The Elsburgspruit, having been joined by the Cinderella Dam effluent, is now a fairly large stream. Some dilution of the river water is effected a little lower down by a clean water stream from the east, but the volume of water involved is not large in dry weather. A sample from the main stream below this point showed that the water is still extremely saline, having a TDS concentration of over 2,000ppm and a pH of 4.6

The next important source of water in this area is the Rondebult sewage purification works (P56), which serves both Germiston and Boksburg.

It is a modern, well equipped works; sewage effluent, which is of good quality, is utilized for irrigation and only seepage from irrigated land enters the Elsburgspruit which flows past to the north of the disposal works. The seepage entering the spruit has an average TDS concentration of 1,020ppm, an OA of 11.5ppm, and its pH averages 7. The alkalinity of the run-off has the effect of precipitating iron and aluminium in the Elsburgspruit, and the pH is raised to about 6.3, while the TDS concentration drops by approximately 300ppm.

It has long been the practice to irrigate this area with Elsburgspruit water and effluent from the Cinderella Dam, but, owing to the acidity of the water, liberal applications of agricultural lime have been necessary to prevent damage to crops. The high salinity of the water has affected the soil considerably, with the result that crops are poor. Better results are reported, however, by farmers using the Elsburgspruit water after admixture with Rondebult sewage effluent, although the salinity is still rather high.

The Elsburgspruit enters the Natalspruit a few miles to the north-west of Rondebult and the resultant stream has an average pH of 6.1 and TDS concentration of approximately 2,000ppm. From this junction for a distance of about eight miles, the Natalspruit flows through pastoral and agricultural countryside, where some dilution of the river water is effected by springs. A sample of the river water taken just before its confluence with the Rietspruit (P57) had a TDS concentration of 1,500ppm and pH of 7.9.

The Rietspruit, which enters the Natalspruit from the north-east, arises in the Witpoort gold area (P58) about four miles to the south-west of Brakpan. The stream is a small one so that seepage and run-off from mines in the area scon affect its composition adversely, the TDS concentration immediately south of the Van Dyk mine being over 1,000ppm. About seven miles from its source the Rietspruit is joined by a small stream that originates near the S.A. Lands mine (P59). This stream is contaminated to much the same extent as the Rietspruit by seepage from slimes dams along its course. By the time the Rietspruit joins the Natalspruit, dilution by springs along its course has reduced the TDS concentration to about 350ppm.

About two miles below its confluence with the Rietspruit, the Natalspruit flows into the Klip River (P60), which here has a pH of 8 and TDS concentration of about 800ppm, while the Natalspruit has a pH of 8 and TDS concentration of 1,400ppm.

The upper reaches of the Klip River, extending to Jackson's Drift, are discussed under 'General', (p.15). At Jackson's Drift the Klip River has a pH of about 7 and TDS concentration of about 900ppm; it can be seen, therefore, that by the time the Natalspruit is encountered the pH has increased by one unit to a pH of 8, and the TDS concentration decreased to 800ppm. Both these changes are directly attributable to the influence of spring water which, in this area, comes into contact with the dolomite series of the Transvaal geological system and has in consequence a high average pH of 7.8 (See Bond 1 p.69).

The Klip River water, which now contains the Natalspruit's contribution, has at this stage in its flow to the Vaal River a TDS concentration of about 1,100ppm; moreover, because of the high pH of 8, only traces of the iron and aluminium salts derived from mining and industrial sources are detectable. The dissolved solids, now comprise almost entirely calcium, magnesium and sodium salts, resulting in a fairly hard water but one that is not altogether unsuitable for irrigation purposes.

The lower reaches of the Klip River will be fully discussed at a later stage, but for the sake of completeness it is worth mentioning that the river water eventually enters the Vaal River and, at the time this survey was conducted (late summer), had a TDS concentration of approximately 800ppm and a pH of 8, indicating further dilution.

Discussion

This preliminary survey of the areas drained by the Natalspruit, the Elsburgspruit, and the Rietspruit, has indicated that mineral contamination of these rivers is especially prevalent and that pure unpolluted tributaries are not encountered along the upper reaches. The high salinity of these river waters make them unfit for nearly all agricultural and industrial uses;

furthermore, signs of aquatic life are rare along many stretches.

During dry weather conditions, the main sources of contamination appear to be seepage water from slimes dams and sand dumps and regular effluent discharges from mine workings [see page 11, item (f)]. In addition, large quantities of water are involved during storms, when storm-water run-off from slimes dams and sand dumps carries with it large quantities of salts in solution and sand in suspension. Indeed, mine waters in general present a big problem and one that certainly warrants investigation, particularly with regard to possible re-use of the water by the mines or by industry.

The penetration of mine sand into the beds of the rivers is another important feature in this area, since normal stream life is disturbed and natural self-purification properties are impaired. The marshy, reed-filled vleis, where sand readily collects, are important pollution barriers and must be protected. Fortunately, however, most of the sand and silt is removed from the stream by dams in the area, but these dams are rapidly silting-up and will be effective for only a limited time unless extensive dredging is carried out.

In addition to mining contamination, some unsuitable industrial effluents are being discharged into these rivers, a practice that must be actively discouraged. This is not unreasonable in view of the fact that suitable methods of treatment are available, or can be developed, for most industrial effluents.

The only sewage purification plant in the area is at Rondebult, and this serves both Germiston and Boksburg. This plant, which treats approximately six million gallons daily, contributes seepage water of good quality to the Elsburgspruit and cannot be regarded as a source of pollution. In fact this seepage water is of better chemical quality than the river into which it flows. Organic pollution of rivers in the area under discussion was, however, noted at a few points, notably near Bantu compounds where kitchen waste-water was discharged without any treatment.

On leaving the mining and industrial areas, all the streams gradually improve in quality, owing to dilution by springs and tributaries. The

increase in pH which dilution brings about, results in the precipitation of iron and aluminium salts. The remaining contaminants are chiefly calcium, magnesium and sodium salts, which give rise to a rather hard water, not very suitable for agricultural use.

The upper tributary of the Blesbokspruit, the Blesbokspruit and the Small Blesbokspruit in the Springs area, the Blesbokspruit in the Nigel-Heidelberg area, and the Suikerboschrand River.

(Map no. 3, sections E, F, and G).

General

There is a marked resemblance between the mining and industrial activities of the Central Rand and the East Rand; consequently the nature of mining and industrial effluents does not differ greatly for the two areas. Although the Blesbokspruit is burdened by a considerable load of pollution in its upper reaches, the extent of dilution by springs and tributaries to the south markedly restores the self-purification processes of the river. Analytical results are presented in Table 3; p.6.

Detailed description

The Blesbokspruit arises a few miles to the north-east of Springs. It is a small stream of little importance until it is joined near Welgedacht Station (P61) by a large tributary from the west, which has it source in numerous springs in the vicinity of the Jan Smuts Airport (P62) and Kempton Park. To start with, the water of this tributary is of excellend chemical quality, having a pH of 7.1 and a TDS concentration of 128ppm. Three dams north of Benoni are actually popular fishing spots. The lowest of the three dams, the so-called Laundry Dam (P63), receives the first important contamination by way of a storm-water drain from Benoni. This contains seepage from sewage-irrigated land (P64) and from some industrial waste, the mixture having a pH of 7.7, a TDS concentration of 680ppm and an OA of 9.8ppm.

The first mining contamination is encountered immediately below the This consists of mine waters, seepage water from sand dumps Laundry Dam. and slimes dams and waste water coming from the direction of the New Kleinfontein mine (P65). As a result, the nature of the stream changes abruptly; the TDS concentration increases to over 2,500ppm, consisting mainly of calcium and magnesium sulphates, but the pH remains constant at about 7.4, indicating lime treatment of the waste water. At the time of sampling (late summer), the flow in the stream here was small and about two and a half miles downstream it had ceased completely. This stretch of the stream is a very bad one during rain storms, since slimes dams and sand dumps on both banks must contribute large quantities of contaminated run-off water, and the bed of the stream is silted up with mine sand.

After flowing eastwards the stream now suddenly turns southwards and at this point (P66) it is joined by two small tributaries. The first is the overflow from the Rynfield Lake (P67) and is a reasonably good water with a TDS concentration of about 600ppm; the second is run-off from the Modder B Mine (P68), with a pH of 5.6, a TDS concentration of over 2,000ppm, and an OA of 37.6ppm. This second stream also contains kitchen waste-water and has a most unpleasant smell. After its confluence with these two small streams the main stream continues to flow between slimes dams, and, by the time it reaches the Geduld Dam (P69), the TDS concentration has risen to about 3,500ppm while the pH has dropped to 3.1.

Three other streams enter the Geduld Dam. The first of these, which enters from the west, consists almost entirely of mining effluent from the Brakpan mines (P70) and is a water of poor quality, with a pH of 3.8, and a TDS concentration of about 4,700ppm. The second stream is a strongly running furrow, which enters from the south-west and which originates in the Brakpan Lake (P71). Brakpan's modern sewage purification plant is the main source of water for the lake; the effluent is of good quality with a pH of 7.2, a TDS concentration of 438ppm, and an OA of 11.8ppm. A power station situated on the north bank of the lake uses the water for cooling purposes. Under normal conditions the lake has no outlet, but when the water reaches a certain level it is pumped into the furrow referred to above.

A sample of this water had a pH of 9 and TDS concentration of 956ppm. Kitchen waste-water from compounds of the State mines (P72) and waste-water from mining activity also enter the furrow; the TDS concentration increases to over 1,100ppm and the OA value to 44.0ppm. The third stream enters the Geduld Dam next to the dam overflow, just south of Dersley Station. This stream enters from the south and contains mining effluent from the Geduld mine, no. 7 shaft (P73). The water has a pH of 8, indicating lime treatment, and a TDS concentration of 2,000ppm.

The effluent from the Geduld Dam is of very poor chemical quality, as its pH is 3.1 and the TDS concentration about 4,000ppm, while iron and aluminium oxides amount to 360ppm. This water immediately enters a further dam where some dilution probably takes place during storms, since the effluent, although still very acidic, has a TDS concentration of 2,000ppm which is considerably less than that of the Geduld Dam.

Cowls Dam (P74), into which the stream now flows, is the last of a series of dams which provide water for mines and industries in the area. This dam, together with a mine, a factory, and a sewage disposal works, form what is nearly a closed circuit in water utilization, the main sources of raw water being the disposal works and underground water from the mine. Owing to the poor quality of the mine water, the factory has had to install a treatment plant at considerable cost, in order to obtain water suitable for process use. For many years the water from this factory was a serious contaminant of the stream, but in recent years considerable improvements have been effected and the effluent, although still not completely satisfactory, The sewage works (P75) mentioned above is fit for re-use by the factory. serves the Springs municipality and produces an effluent of reasonably quality. None of this, however, enters the stream since it is all used by industry.

The effluent from the Cowls Dam now enters the Blesbokspruit (P61) and the combined stream samples at the bridge on the road from Springs to Delmas had a pH of 7.2 and TDS concentration of over 2,000ppm. The fact that the pH of this water is so much higher than that of the influent to the

Cowls Dam is due to the alkaline nature of the factory effluent, discussed above. Slimes dams in this area contribute contaminated run-off and seepage water during storms.

About five miles below its confluence with the large tributary from Benoni, the Blesbokspruit is joined by the Small Blesbokspruit (P76), a fairly strongly flowing tributary which originates west of Springs (P77) and flows through a mining and industrial area. Here seepage and drainage from slimes dams, sand, rock dumps, and other mining activity soon affect its mineral composition adversely. Drainage from one rock dump (P78) had the uncommonly high TDS concentration of 56,530ppm, and a pH of 2.8.

Approximately one mile before its confluence with the Blesbokspruit, the Small Blesbokspruit receives the seepage and run-off water from sewage-irrigated land (P79). This effluent comes from the Ancor sewage purification plant that serves a large portion of Springs. It is of good chemical quality, having a pH of 7.2, a TDS concentration of 400ppm and an OA value of about 11.0ppm. The Small Blesbokspruit at this stage has a pH of 3.6 and a TDS concentration of 3,400ppm. The sewage effluent, therefore, serves as a diluent.

The Blesbokspruit now flows southwards down a long marshy valley, which extends to within a few miles of the mining town of Nigel. Along this stretch of the river are a few potential sources of contamination, namely the Daggafontein (P80), Vogelstruisbult (P81) and Marievale (P82) mines. It is possible, however, that only during the more severe rain storms can run-off water from slimes dams and sand dumps find its way into the Blesbokspruit; but the position needs to be watched.

The next major source of contamination is a stream which arises north-west of Nigel in the vicinity of the Vlakfontein gold mine (P83). A sample, taken where the Springs-Nigel road crosses the stream, had a pH of 5 and a TDS concentration of 2,000ppm, due mainly to calcium and magnesium sulphates and chlorides which might be of sevage origin. More mine water enters this stream about two miles lower down. This is seepage water from slimes dams of the Sub-Nigel mine (P84) and it has a pH of 3.3 and 2,400ppm dissolved solids.

This tributary of the Bleebokspruit now flows into two successive dams, bounded by mining property and slimes dams (P85) just north of Nigel, and the overflow, which has a pH of 4.3 and 2,600ppm dissolved solids, passes through the town and into the main river about one mile further down. A sample taken from the combined streams about a mile below this confluence had a pH of 7.4 and TDS concentration of 2,100ppm. The Nigel sewage disposal works (P86), which is situated here, produces an effluent of good quality but none of this enters the Blesbokspruit as it is all used for land irrigation.

Additional contamination from mining sources can enter the river below this point, for example from the Spaarwater (P87) and Poortjie mines (P88), but here again this is only possible during unusually severe storms. During dry weather, dilution by springs and small tributaries is the main factor in this section; and by the time the river reaches Heidelberg, a decrease of approximately 400ppm in TDS concentration has been brought about.

A tannery (P89) in Heidelberg disposes of its effluent in a series of small settlement pools, but these appear to be barely adequate and seepage water was seen to enter the river. No sample was obtainable, but tannery wastes are known to be generally undesirable in streams because of their large oxygen demands.

From Heidelberg until its confluence with the Suikerboschrand River (P90), the Blesbokspruit receives no further pollution and the TDS concentration falls to about 1,300ppm, while the pH rises to 7.8. The gradual rise in the pH of the river water, from about 7 at Springs to 7.8 here, is due to the alkalinity of the ground water in the area.

The Suikerboschrand River, which is a fairly strongly running stream under normal conditions, rises about thirty miles east of Heidelberg. Since this river passes through agricultural and pastoral countryside, no mining or industrial contaminants have access to it and in consequence the water is of good chemical quality, the pH being 7.8 and the TDS concentration 125ppm.

From its confluence with the Blesbokspruit, the Suikerboschrand River flows through open countryside for a further twenty miles before entering the Vaal River a few miles above Vereeniging (P91, Map no. 4). At the time of the survey the pH of the water here was 7.3 and the TDS concentration over 700ppm, while the conductivity was 1,000 micro-mhos. Rand Water Board records indicate that, for this river water, the average monthly conductivities over the last few years have varied between 390 and 1,400 micro-mhos. This big variation is seasonal, the high conductivities corresponding with the rainy months, when rain water run-off from sand dumps and slimes dams comes down in flood.

Discussion

Of the rivers discussed so far, the Blesbokspruit is the only one with appreciable stretches of fairly unpolluted head waters (e.g. main tributary). The mineral pollution in the mining areas from Benoni to Bethal is, however, so severe that its deleterious effect is observed in the whole stretch of the river below Benoni. The points at which pollution enters the river's course below Bethal are separated at five to seven mile intervals and this helps to maintain an almost steady degree of pollution right up to Heidelberg.

The flow in the Blesbokspruit is small during winter, the river is sometimes completely lost in the reeds north of Nigel, so that the accumulated mineral pollution is very marked. Also, along the stretch of river below Bethal, the slimes dams and mine heaps, which are the contributors to pollution, are far removed from the river. Accumulations from them are retained and are swept into the river during heavy rains.

The dams in the upper river must have a beneficial effect on flow conditions. During mild rains the dams do not contribute to the flow in the initial stages so that mineral pollution lower down the river is separated from the mineral pollution in the upper reaches. This must prevent some of the 'slugging' effect of mineral pollution discharged in one operation.

For several miles, the Blesbokspruit passes through vlei-areas. In any scheme to combat the pollution of the Blesbokspruit, investigation should be made into the possibility of utilizing the vlei's purification capacity.

The lower Klip River and Vereeniging area (Map no. 4. Section AA)

General

The Klip River at Jackson's Drift contains drainage water of a large part of the West Rand from Johannesburg to Lewisham (see Map no. 1). This water consists of run-off and seepage water from mines, industrial and sewage effluents, and natural water from springs and unpolluted tributaries. It had, at the time this survey was conducted, a pH of 7 and a TDS concentration of 900ppm, which is a distinct improvement on the value of 1,500ppm found a few miles upstream. Gradual improvement, due principally to dilution, is maintained for the next 8 to 9 miles, until just before the confluence with the Natalspruit (see Map no. 2) when the pH was 7.9 and the TDS concentration about 800ppm.

Detailed description

The Natalspruit water, with its pH of about 8 and TDS concentration of over 1,400ppm (see Tetailed description, p.24) is the major source of the pollution occurring in the Klip River which now has a dissolved solids concentration of over 1,000ppm. In the course of the next twelve miles this value drops to about 800ppm, again by dilution.

The next important source of contamination is the Klip Power Station (P92), which discharges water with a pH of 8.7, a TDS concentration of 271ppm, and an OA of 74.2ppm. Judging by its appearance this water is derived mainly from ash quenching and conveyor systems.

At Vereeniging the Klip River had a pH of 7.9 and a TDS concentration of 823ppm, but records of the Rand Water Board indicate large fluctuations

in quality, and average monthly conductivities of over 1,000 micro-mhos are common during the rainy season.

A final source of contaminated water must be mentioned. Although the volume of water is small and the chemical quality reasonable, the main trouble here is floating mineral oil. The source is South African Farm Implement Manufacturers, Limited (P93), who discharge waste-water containing oil into the Klip River at the bridge on the road from Vereeniging to Vaal Dam. About one mile lower down (P94) the Klip River flows into the Vaal River.

In the Vereeniging area a few other sources of contamination are of The first and most important discharge consists of the combined effluents from Stewarts and Lloyds (P95) and the Union Steel Corporation (P%) factories. Individual analyses of these two waters indicated pH's of 6 and 3.8 and TDS concentrations of 194ppm and 779ppm respectively. Both these waters are objectionable: that from Stewarts and Lloyds mainly because of floating oil, and that from Union Steel Corporation because of both its acidity and its TDS concentration which is due almost entirely to iron sulphate in solution. The combined effluents discharge into the Houtkopspruit, a small stream which rises north-west (P97) of Vereeniging and flows into the Vaal River near the Riviera Hotel. On occasions floating oil from this stream has made swimming in the Vaal River below the confluence most unpleasant.

The Vereeniging Power Station (P98) is also a source of contaminated water, since water from ash quenching operations has direct access to the Vaal River. A sample of this water had a pH of 13.2 and TDS concentration of 3,478ppm consisting mainly of calcium sulphate.

The last important effluent in this area comes from a Union Steel Corporation factory (P99), situated on the north bank of the Vaal River immediately below Vereeniging. This plant discharges a steady stream of water with a TDS concentration of about 200ppm, which is not significant; floating oil, however, is the main contaminant and should be removed.

Discussion

The Klip River shows improvement in quality in its run from Jackson's Drift to the confluence with the Natalspruit (see 'Detailed description' p.24) and has a pH of 8 and TDS of 800ppm. After the confluence with the Natalspruit the TDS rises to 1,000ppm and twelve miles downstream decreases to 800ppm. If the drop in TDS was brought about by dilution only, then the contribution to the flow by springs along this length of river must at least equal three quarters of the Natalspruit flow. In the absence of gauging weirs on the streams from natural springs, this could not be verified. The river flows through vleis and reeds in this area and a reasonably accurate determination of the flow contributions of the springs would permit one to establish whether dissolved solids were being removed along the length of the river by these vleis.

Except for the discharge occurring as a result of ash quenching at the Vereeniging power station which is almost completely saturated with dissolved solids, the pollution along this stretch of river is of a different nature from that resulting from mining operations. The main pollution is by oily effluents which, apart from unsightliness, do not cause much damage to the quality of the water. The discharges in this area are all 'controllable' in that they are dissipated as they are produced. In contrast to the Accumulated Mineral Loads carried in run-off during the rainy seasons, these effluents offer a wider scope for safe-guarding the river because control can be exercised over manufacturing processes as well as over the disposal of effluents.

DISCUSSION /....

DISCUSSION OF THE RESULTS OF THE PRELIMINARY SURVEY

It is unfortunate that, while the rivers dealt with in this preliminary survey of streams in the Witwatersrand area start off as crystal clear springs, all are usually badly contaminated within a few miles of their sources. All the rivers and streams studied in this survey pass through extensive mining and industrial areas and the water is soon rendered unfit for most industrial and agricultural uses.

Seepage from slimes dams and sand dumps, waste water from reduction works, water pumped from underground workings of mines, compound waste water, and industrial effluents constitute the main contaminants under dry weather conditions. Sewage effluents are also encountered, but these are generally of far better chemical quality than the streams into which they flow. During the rainy season additional large quantities of contaminated water are involved when storm-water run-off from slimes dams and sand dumps carries with it considerable quantities of salts in solution, together with sand and silt in suspension.

Penetration of sand and silt into the water courses is very far advanced and large stretches are completely silted up, as are many of the dams which have long arrested the advance of the sand. This is a very serious aspect of the problem, because the sand soon chokes normal aquatic life in the natural vleis, and the self-purification effected in these important pollution barriers is impaired.

Dilution of the contaminated river water by springs and tributaries is again of great value, but its effects are not as noticeable on the Blesbokspruit as they are on the Klip River, because mining activity is encountered much further to the south in this area and fresh contamination keeps the dissolved solids concentration high. Only when the water reaches the Suikerboschrand River does its quality approach a more reasonable standard.

Industrial activity in the Vereeniging area has resulted in a number of undesirable effluents. This is to be deprecated, particularly as these effluents are of such a nature that they could fairly readily be rendered innocuous.

This preliminary mapping survey of the rivers draining southwards from the Witwatersrand and discharging into the Vaal River above Vereeniging has clearly indicated both the nature of the contamination encountered and its principal sources. These sources are mainly slimes dams and sand dumps of active and derelict mines, and also reduction works, while isolated industrial concerns are responsible for discharging highly mineralized waters.

In view of the fact that the value of water for re-use is largely determined by its initial total mineral-salt concentration, this contamination from mining and industrial sources must be actively discouraged so as not to jeopardize future industrial expansion along the southern Witwatersrand. Water leaving sewage disposal works and industrial waste-treatment plants must be of such a nature that it can readily be re-used.

CHAPTER THREE/....

CHAPTER THREE

QUANTITATIVE SURVEY OF THE KLIP RIVER AND THE NATALSPRUIT AND THEIR TRIBUTARIES

(Map sections A, B, AA, C, D and CC)
(Tables 5 to 17 and diagrams 1 to 13)

The Klip River at Vereeniging (Map no. 4, sampling point AA4c)

The mineral load data are represented graphically in Figures 2 and 2A, p. 57 and some specific data are summarized in Table 26, p. 50.

Observations:

- (a) During the dry months (May to October), average dry-flow conditions prevail in the Klip River at this point, except that towards the end of the dry season there is a rapid decrease in the flow with a corresponding decrease in the observed total mineral load.
- (b) The dry-weather flow (May to October) consists of effluent discharges from mines, sewage disposal plants (directly and via underground percolation), and natural flows from springs. Run-off resulting from rainfall can be considered as nil, except for out-of-season rains. Therefore, for this period observed total mineral loads only are recorded. Some assessment of the quantity of the dissolved mineral load which is carried in the regular effluent discharges reaching this point during the dry season, is obtained by the difference between the observed total mineral load and the natural total dissolved mineral load. The latter figure represents the dissolved mineral load which would be contributed by a natural flow equal to the observed flow. This assumption represents approximately the true position since all effluent waters (sewage and industrial) originate from either domestic water supplies (TDS 100 to 200ppm during dry months) or natural underground water (for TDS see Table 4, p. 7). Data on the total dissolved mineral load carried in regular effluent discharges reaching point AA4c, are plotted in Figure 2A, p. 58.

- (c) The average dissolved mineral load see Figure 2(a), p. 58 carried in the regular effluent discharges, calculated as detailed in (b) above and reaching the Klip River at Vereeniging during the dry season, was 50 and 65 tons per 24 hours for 1952 and 1953 respectively. The maximum and minimum loads for the corresponding period were 105 and 10 tons per 24 hours, respectively.
- (d) During July 1952 rain fell on the Witwatersrand; the observed total mineral load rose sharply and exceeded the expected total mineral load considerably. On 28th July the excess was 300 tons per 24 hours. This latter figure represents the accumulated mineral load, e.g. solids dissolved from slimes dams, sand dumps, mining areas, and solids in solution in water released during storms from slimes dams, which reached the Vaal River by way of the Klip River at the time the measurements were taken.
- (e) For the whole of the rainy season the observed mineral load exceeded the expected mineral load very materially. This observation indicates quite clearly that, during the summer months, the flow in the Klip River at Vereeniging carried a heavy accumulated mineral load. The maximum recorded was 4,035 tons per 24 hours during floods, and the minimum was 70 tons (Table 26, p. 50) towards the end of the rainy season (April 1953) when little rainfall was recorded and flows were not high. The average accumulated dissolved mineral load was 860 tons per 24 hours.
- (f) During the rainy season mineral load contributions by regular effluent discharges can be estimated from the difference between the expected total mineral load and the natural mineral load. (See (b) above and refer to definitions). It is a most remarkable feature that the mineral contributions by regular effluent discharges during the rainy season did not fluctuate as widely as those for the dry season. The extreme limits recorded were 50 and 82 tons per 24 hours, with an average of 60 tons per 24 hours; whereas during the dry season see (c) above the limits were 105 and 10 tons per 24 hours.

(g) The data plotted in Figure 2A, p.58, indicate clearly that, during the latter half of the dry season, the dissolved mineral load resulting from regular effluent discharges decreased rapidly, in consequence of which the composition of the water in the Klip River at point AA4c approached that of a natural water. That is, the TDS concentration in the water decreased.

Klip River - Natalspruit confluence (Map no. 2, sampling points AAla, AAlb and AAlc)

The mineral load data for the Klip River - Natalspruit confluence are detailed in Figures 3, 3A, 4, 4B, 5 and 5A, pp.59 to 62.

The general picture at each of the three sampling points is identical with that of the Klip River - point AA4c, Figures 2 and 2A, p.57 - at Vereeniging. The general observations made above for the Klip River at Vereeniging (p.43) are also applicable for the Natalspruit - Klip River confluence. Table 27, p. 50, summarizes outstanding specific data only.

Observations

- (a) The general observations made above for the Klip River at Vereeniging Point AA4c are also applicable to the Natalspruit Klip River confluence.
- (b) The mineral load data given in Table 27, p. 50 for the Klip River below its confluence with the Natalspruit do not represent in detail the sum total of the relative mineral loads of these two rivers before their confluence, as will become evident from the following observations.
- (c) Flow recordings for the three observation points AAla, AAlb and AAlc were not always made on the same day. Peak flow gaugings, for example at AAlc, never coincided with recordings at AAla and AAlb. Sufficient data were available for point AAlc to indicate that actual peak flows were not recorded for AAla and AAlb. For example, when the maximum observed

mineral load for point AAlc was recorded for the period 10 - 13 November, 1952, no corresponding measurements were made for AAla and AAlb.

- (d) Maximum or minimum load recordings for the Natalspruit and Klip River above their confluence did not always coincide. For example, the maximum load from regular effluent discharges was recorded for the Natalspruit Figure 5A, p.62, on 3rd July, 1952, whereas the maximum for the Klip River Figure 4A, p.61, was reported on 6th May, 1953.
- (e) Dissolved mineral load contributions from the Natalspruit appear to be less than those from areas drained by the Klip River above the point of confluence of the two streams. It should be explained, however, that the quantitative data for point AAlb are far too incomplete for a definite statement of fact. For example, in the case of AAlb the average dissolved mineral load contributed by regular effluent discharges during the dry season of 1953 Figure 5A, p.62, was reported as 17 tons, as compared with 36 tons for 1952; whereas the corresponding dry season figures for both 1952 and 1953 for point AAla Figure 4A, p.61, remained fairly constant.

Comparison of Klip River at points A41c and A44c (See Maps nos. 2 and 4 respectively)

In comparing the relative mineral load data for the Klip River at points AAlc below its confluence with Natalspruit, and AA4c at Vereeniging, careful note should be taken of certain factors, particularly of data for the rainy seasons, before drawing any conclusions.

Observations:

(a) During the rainy season flow recordings at Vereeniging, AA4c, could not be made when the flow exceeded 230 cusecs, i.e. the maximum that could be recorded at this particular weir. Consequently the more regular gaugings made during the rainy season at the Lime Works, AAlc, were used in calculating the mineral load data for point AA4c.

- (b) During the rainy seasons TDS concentrations fluctuated very frequently at both point AAlc and point AA4c. For many flow recordings at point AAlc no TDS concentrations were determined; and in order to evaluate the average mineral load data for regular effluent discharges and accumulated mineral load reported in Table 27, p.50, TDS data were calculated by interpolation. In consequence of this, the mineral load data for point AAlc are not as reliable as those for point AA4c, for which a very wide range of TDS data were available.
- (c) During the dry season, flows and TDS concentrations at both points remained fairly constant except late in the season when flow and TDS decreased, and approximately natural conditions prevailed in the Klip River. A fair comparison could, therefore, be made between the relative dry season mineral load data for the two points. The outstanding feature was that a considerable decrease in dissolved mineral load occurred between AAlc and AA4c, in spite of the fact that average flows for both points did not differ very materially (Figure 6, p.63), certainly not sufficiently to explain the decrease in dissolved mineral load contributions. explanation for the decrease can be given as the scope of the survey did not provide for the collection of sufficient data. The most obvious explanation, however, is that a considerable volume of water is used for irrigation from the Klip River between these two points, but natural inflows from springs (average TDS 100ppm) compensate for flow decrease due to water abstraction and evaporation. Under such conditions the relative mineral load contributions and TDS concentrations as measured at AA4c would decrease. That is, conditions in the streams at this point tend to become natural. Observations at point AA4c seem to support such an explanation.

Klip River above the Natalspruit confluence (Map no. 1)

In Tables 5 to 7, (pp. 9 to 13) some data are given in order to present a general picture of the excess dissolved mineral loads which were recorded at various points in the catchment area of the Klip River above the Natalspruit confluence. The tables also contain data for sulphates and

total hardness; these salts predominate in waters contaminated with dissolved mineral salts.

For this area, data concerning chemical analyses of the water at all sampling points above Jackson's Drift are very incomplete. Consequently the mineral load data could be calculated for only a few points.

Observations:

- (a) At Jackson's Drift (Al2), the mineral loads increased very materially during the rainy season but remained fairly constant during the dry season, except towards the end of October.
- (b) For the reasons given above it is advisable not to venture any comment on the waters above Jackson's Drift (sampling points A7, B7b, A1, B3a, B9a and B9c), though two statements may be made: first, that the waters draining from the various mining areas carried heavy excess dissolved mineral loads, in consequence of which the TDS of the main streams were far in excess of those of the inflows from natural springs and other natural flows (A4'b, A4'c, Blb, B4a, B6a, B4'b, B4'd, Bllc, Bl4b); and second that the TDS of sewage effluent seepages (B5b, B5'b, A8, A9, A10) into the Klipspruit were less than those of inflows from the mining areas (B3c, B9c) drained by the Klipspruit, and seemed to have had a diluting effect on these inflows (compare B3c and B9c with B7b).

Natalspruit before confluence with the Klip River (Map no. 2)

Tables 8 to 17 (pp. 15 to 33) detail some data on the outstanding dissolved mineral constituents in the water, and on the magnitude of the excess dissolved mineral load contributed at some of the sampling points in the Natalspruit catchment area.

Observations:

(a) For the Rietspruit system, before confluence with the Natalspruit (Table 8, p.15, point Cllb), the excess mineral load is quite significant,

particularly during the rainy season when accumulated salts are leached out.

- (b) The Natalspruit, before its confluence with the Elsburgspruit, drains an extensive and complicated mining area. Apparently, from the data presented in Tables 9 to 12, pp. 17 - 23, it is essentially mine effluents that contribute to the high TDS of the water. on waters passing points Cla, Clc, C4a, C4c, C6a, C9a and ClOd indicated mainly storm water, spring water, surface water, sewage effluent, some factory effluent, but very little, if any, mine water. The sample taken at point ClOa, on the Natalspruit, reflects the total pollutional load for this area, as shown in Table 9, p. 17. It should be noted that on 5th November, 1952, an observed mineral load and an accumulated mineral load of 1,570 and 1,480 tons respectively were measured. These loads were in excess of those recorded in the data for sampling point AAlb (Table 27, p. 50, and Figure 5, p. 62), thus indicating quite clearly that, during floods, much larger mineral loads escaped recording at sampling points AAlc, and AA4a. The same observation applies to the data recorded on 12th October, 1953. Generally, the picture was the same as at other sampling points on the Klip River.
- (c) Comparison of the relative data for the Elsburgspruit (Tables 13 to 17, pp. 25 to 33) and Natalspruit before their confluence indicates that the mineral load contribution from the Elsburgspruit was considerably less during the period of survey. The data also indicate that, with a few exceptions, the Elsburgspruit carried mineral salts which must have originated from mining areas.
- (d) The mineral loads reported for point AAlb (Table 27 and Figure 5) do not necessarily represent the sum total of mineral load contributions from points Cllb, ClOa and D3c (Tables 8, 9 and 14, pp. 15, 17 and 27).

OF THE KLIP RIVER SYSTEM

Comparison of the Vaal Dam discharge and Klip River at its confluence with the Vaal River

The TDS of the Vaal Dam discharge (Figure 1) at Engelbrechts Drift before its confluence with the Klip and Suikerboschrand Rivers vary between 75 and 110ppm, with an average of 95ppm during wet and dry seasons. This water carried the natural mineral load of run-off flows encountered in the area under investigation. Consequently the observed total mineral load for the Vaal Dam flow plotted in Figure 1A also represents the natural mineral load. In the Klip River catchment area the TDS concentration in uncontaminated springs and run-off is of the same order (Table 4) as that of the Vaal Dam discharge.

For purposes of comparison, the corresponding data for the Klip River at Vereeniging are given on the same graph in Figure 1A. Discussion of a few specific examples should be sufficient to illustrate that the mineral load carried by the Klip River far exceeds that of the Vaal Dam discharge, particularly during periods of rainfall in the catchment area of the Klip River. Thus:

- (a) During the dry months the total mineral load contributed by the Klip River is less than that from the Vaal Dam, whereas its TDS (Figure 1, p.56) is higher. It should be noted, however, that the heavier load carried by the Vaal Dam discharge in comparison with the Klip River is not in proportion to the difference in relative flows. For example, on 13th October, 1952, the total mineral loads for the Vaal Dam and Klip River were 775,000 and 50,000lb per 24 hours respectively. That is, the Vaal Dam load was about 16 times that of the Klip River, whereas its flow was more than 100 times that of the latter. Such a discrepancy could be explained only by heavy mineral contamination of the Klip River water.
- (b) During July, 1952, rain fell on the Witwatersrand and the flow in the Klip River increased temporarily. The total mineral load of the

Klip River immediately increased to more than twice that of the Vaal Dam discharge, whereas the flow from the Vaal Dam was more than four times that of the Klip River.

- (c) During the rainy season the total mineral load of the Klip River generally exceeds that of the Vaal Dam discharge. On 15th December, 1952, the Klip River (in flood) discharged dissolved mineral salts at a rate of nearly 4,500 tons per 24 hours, as compared with 150 tons from the Vaal Dam (viz 30 times as much), whereas the flow in the Klip River was approximately only $3\frac{1}{2}$ times that of the Vaal Dam. Such a general condition during the rainy season must result in an increase in the TDS concentration in the Vaal River water below its confluence with the Klip River.
- (d) Occasionally during the rainy season, the Vaal River is in heavy flood. During such a period, the total mineral load of the Vaal Dam overflow exceeds that of the Klip River. For example, on 9th March, 1953, the Vaal Dam overflow (8,200 cusecs) carried a total mineral load of 1,680 tons in comparison with 260 tons from the Klip River (no flood flow recorded during 24 hour period). Comparison of the relative flows shows that the Vaal Dam overflow was approximately 70 times that of the Klip River, whereas its total mineral load contribution was only approximately seven times as much.

Comparison of the relative mineral loads carried by the Vaal Dam discharge and the Klip River indicates quite clearly that the Klip River carries dissolved mineral loads far in excess of those expected from natural sources. For example, during the dry season of 1952, the average discharge from the Vaal Dam (996 cusecs) was 29 times that of the Klip River (34 cusecs). But the total mineral load carried by the Vaal Dam (average 274 tons per 24 hours) was only 4.5 times that of the river (63 tons per 24 hours). See Figure 1A, p.56.

This apparent contradiction was also observed during the rainy season, particularly during flood periods. On 16th February, 1953, for example, both the Vaal and Klip Rivers were in flood and although the flow

of the Vaal River (7,080 cusecs) was approximately 6 times that of the Klip River (1,295 cusecs), the total mineral load carried by the Vaal River (1,810 tons per 24 hours) was only one half that of the Klip River (3,650 tons per 24 hours).

The abovementioned phenomenon can be attributed only to mineral pollution.

Mineral pollution

A survey of natural sources indicated quite clearly that the dissolved mineral salts from these sources could not account for the loads observed, nor for the rise in TDS concentrations in the Vaal River during the rainy season. In order to demonstrate the extent of this mineral pollution, a quantitative survey was made of the dissolved mineral load carried by the Klip River at Vereeniging, both before and after its confluence with the Natalspruit. The quantitative survey was extended, in somewhat lesser detail, to the upper reaches of the Klip River and the Natalspruit in order to obtain an approximate picture of the relative magnitudes and constituents of contributions from the various areas.

The data recorded at all the main sampling points-AA4c, AAlc, AAlb and AAla - indicated two main types of dissolved mineral pollution.

(i) Regular mineral pollution from other than natural sources:

There was regular discharge of mineralized waters from other than natural sources. It appeared that, in the dry season, both the maximum and minimum daily discharges occurred with considerable intermediate variations. At Vereeniging (AA4c) the maximum and minimum mineral load contributions from regular effluent discharge were 105 and 10 tons per 24 hours respectively. During the rainy season minimum and maximum mineral load contributions from regular effluent discharge did not differ very materially.

(ii) Accumulated mineral pollution:

During the rainy season and particularly during heavy rains, the Klip River carried a dissolved mineral load greater than could be accounted for by the regular effluent discharges and natural flows, namely springs and run-off water. This mineral load was due to the dissolving of mineral salts which had accumulated in the soil under irrigation, in sand dumps and slimes dams in mining areas and due to irregular discharges of large volumes of penstock waters. This type of mineral pollution has been termed accumulated mineral The magnitude of this accumulated mineral load depended largely upon the rain that had fallen, and during floods as much as 4,035 tons per 24 hours were measured at the Vaal River confluence (AA4c). During the rainy season it was found to be many times greater than the dissolved mineral load contribution from regular effluent discharge (See Tables 26 and 27, p.50). The average and maximum values at AA4c for accumulated mineral load were, respectively, nearly 15 and 49 times as great as the corresponding values for dissolved mineral load from regular effluent discharges.

The accumulated mineral load reaching the Vaal River during the rainy season appeared to be largely responsible for the rise in TDS of the Vaal River water after confluence with the Klip River. The magnitude of this mineral load was of such an order that the combined diluting effects of the run-off water in the Klip River catchment area and of the Vaal River were completely masked, even during heavy floods - see Figures 1 and 1A, p. 56. Had no mineral pollution been present the TDS would have been less than 90ppm.

QUANTITATIVE SURVEY OF THE SUIKERBOSCHRAND RIVER
AND ITS TRIBUTARIES, THE BLESBOKSPRUIT, THE SMALL
BLESBOKSPRUIT AND THE UPPER TRIBUTARY OF THE
BLESBOKSPRUIT
(Map Sections E, F and G)
(Tables 18 to 25 and Diagrams 14 to 21).

Suikerboschrand River at Vereeniging (See Map no. 4, sampling point GlSa)

The mineral load and TDS data are represented graphically in Figures 7, 8 and 8A, p. 63 to 65, and some specific data are summarized in Table 28, p. 51.

Observations

- (a) During the period, May to July, 1952, no appreciable flow was recorded and accordingly the mineral load contributed by this river was negligible. Rain was recorded for the week that ended 14th July, and as a result the load increased the next week from 10 to 25 tons per 24 hours. After more rain in the following week, there was a further increase to 40 tons per 24 hours.
- (b) Following the rainy spell, there was a dry period lasting from August to the beginning of October, 1952. The flow stopped completely during this period. Although it started raining in October no flow was recorded before the middle of November.
- (c) On 17th November, 1952, the observed mineral load exceeded the natural mineral load by nearly 250 tons per 24 hours. This figure represents the excess mineral load, which reached a value of 2,385 tons per 24 hours on 15th December, 1952.
- (d) The average dissolved mineral load Figure 8A, p.65 carried by regular effluent discharges reaching the Suikerboschrand at Vereeniging during the dry season was 4.5 and 8.0 tons per 24 hours for 1952 and 1953 respectively, and the maximum and minimum loads were 18.4 and nil tons

respectively. During the rainy season the average was 10.0 tons with a maximum and minimum of 13.5 and 5.5 tons.

- (e) The observed mineral load exceeded the expected mineral load throughout the rainy season, indicating an accumulated mineral load carried by the Suikerboschrand during the normal rainy season. The maximum and minimum accumulated mineral loads for the wet season November, 1952 to April, 1953, were 2,385 and nil tons per 24 hours respectively, and the average for this period was 220 tons per 24 hours.
- (f) As in the case of the Klip River Natalspruit system, mineral load contributions by regular effluent discharges were reflected in two main characteristics:
 - (i) Towards the end of the dry season contributions decreased to almost nil.
 - (ii) During the rainy season or a wet period (July, 1952) it increased and remained fairly constant.

The Suikerboschrand River before confluence with Blesbokspruit (Sampling point G17b)

Although regular sampling was carried out at this point, no flow was recorded. Approximate flows were obtained for a few selected dates from the differences of recorded flows at Vereeniging on the Suikerboschrand and at Heidelberg on the Blesbokspruit. Calculated mineral load and TDS data are represented graphically in Figure 9, p.66.

Observations

(a) It will be seen that the observed mineral load never materially exceeded either the expected or the natural mineral load throughout the dry seasons. The only conclusion drawn from this fact is that, up to this point there was no mineral pollution in the river.

- (b) During the rainy season the observed mineral load exceeded the expected mineral load to only a limited extent. This indicated very limited solution of accumulated salts. The accumulated mineral load which was recorded probably originated from land which had received fertilizer treatment. The maximum accumulated mineral load recorded was 5.75 tons per 24 hours on 6th January, 1953, when it rained in the area.
- (c) The mineral load data for this point clearly illustrate the definitions given for expected and accumulated mineral load given in (f) and (g), p. 11.

The Blesbokspruit (in the Heidelberg area)

hefore the Suikerboschrand.

(Sampling points G15b, G15a, G15c, G10a and G11b)

The analytical data for G15a and G15c are presented in Table 18, p. 35. G15a is an effluent from a tannery in Heidelberg. It is offensive in nature (note, OA 4 hours) and has a very high concentration of dissolved solids. The mineral load and TDS data for point G15b are detailed in Figures 10 and 10A, p.67. Table 29, p.51, summarizes outstanding specific data.

<u>Observations</u>

- (a) Only a limited number of recordings per month were made at point G15b and consequently the maximum and average data for the rainy season, as represented in Table 29, p.51, are of limited value only. In Table 28, p.51, however, more accurate assessment of the maximum mineral load contributions arising from the Blesbokspruit catchment area is recorded for point G18a, where regular recordings were made. And it may be noted that only limited additions of accumulated mineral salts were made between G15a and G18a. (See Observations, p.55).
- (b) Minimum data for the rainy season, recorded in Table 29, p.51, can be taken as a true reflection of run-off conditions when flow and TDS variations were limited. Consequently, in comparing minimum data

recorded during dry spells in the rainy season for points G18a and G15b (Tables 28, 29, p.51) it will be noticed that material reduction in mineral load occurred between these points. There appear to be two reasons for this reduction, viz. use of the water for irrigation purposes during dry spells, and infiltration into sub-strata.

- (c) During the dry season the maximum and average mineral load contributions recorded at point G15b (Table 29) were consistently higher than those recorded at point G18a (Table 28, p.51). This reduction in mineral load is also ascribed to the factors detailed in (b) above. For the period September to November, 1952, flow ceased at both points G15b and G18a.
- (d) Mineral load contributions by regular effluent discharges during the rainy season or wet period in July 1952 Figure 10A, p.67 remained fairly constant and fairly high, whereas towards the end of the dry season the decrease was very rapid.
- (e) The exceptionally high TDS concentrations recorded here afford ample confirmation of the high TDS data observed at point Gl8a, which is on the Suikerboschrand River after confluence with the Blesbokspruit.
- (f) Flows at points Gllb and GlOa were mainly due to natural springs and, although mine seepage was observed, it was not revealed in the analysis.

Sampling points G8c, G8d, G5a, G4c, G9c, G2c, G1c and F1c)

Analytical data for these sampling points are presented in Tables 19 and 20, pp. 37 to 39.

Observations

The Vlakfontein stream drains a mining area, a fact which is clearly reflected in the mineral load data for point GSc.

All the remaining points receive mine effluents which are reflected in the total hardness and sulphate data. Similar to points G18a and G15b, the TDS concentrations recorded at G9c were exceptionally high throughout the dry and rainy seasons.

The Small Blesbokspruit Springs area (Sampling points F2b, F4c, and F3b)

Analytical and mineral load data for these points appear in Table 21, p.41.

Table 30, p.52, presents mineral load data for the dry season at F2b. Analytical data for the rainy season were recorded too infrequently for even an approximate estimate of mineral load data to be made.

<u>Observations</u>

The general conditions prevailing in this stream are identical with those in the Suikerboschrand at Vereeniging and the Blesbokspruit at Heidelberg.

Sampling points F4c and F3b yielded typical examples of mining effluents. The total dissolved solids concentration at F3b was 83,870ppm in August, 1953, and throughout the period of survey it never dropped below 26,000ppm.

The Blesbokspruit - Upper tributary confluence with Blesbokspruit

(Sampling points Elle, Ellb and ElOc)

Tables 22 to 25, pp. 43 to 49, should be consulted in connection with analytical data relating to this section. It will be observed that the Blesbokspruit above the confluence with the upper tributary (Ellb) was not flowing during dry periods. The data recorded did not indicate serious pollution, if any. In the case of Ellc, however, there are very definite signs of pollution caused by the inflow of the upper tribuary (sampling points ElOc, ElOb, ElOa, E9c, E9a, E8a, E8b, E8d, E7a, E7b, E5d, E5b, E5a, E3a, E3b).

Figures 11 and 12 illustrate graphically the mineral load data for points ElOc and E9c, viz the effluents from Cowl's and Geduld Dams respectively. These were the only two points in this section where regular flow recordings could be made.

Summaries of the outstanding data are contained in Tables 31 and 32, pp. 52, 53.

<u>Observations</u>

- (a) At Cowl's Dam the gauging weir was too small to record high flows during the rainy season, and the mineral load contribution from this dam to the Blesbokspruit could, therefore, not be calculated during flood periods.
- (b) The regular mineral load leaving the Cowl's Dam is considerably higher than that contributed by the Geduld Dam. Consequently a very heavy mineral load is added between the Geduld Dam and the Cowl's Dam.
- (c) All these sampling points receive mine effluents, except ElOb, E3b and E3a. ElOb is an effluent from S.A. Pulp and Paper Industry; E3b is an unpolluted stream entering the Laundry Dam at Benoni, and E3a is a storm water drain carrying treated sewage effluent which enters the Laundry Dam.
- (d) The general characteristics are the same as those of the Suikerbosch-rand at Vereeniging (G18a).

DISCUSSION OF THE RESULTS OF THE
QUANTITATIVE SURVEY OF THE
SUIKERBOSCHRAND RIVER SYSTEM

Comparison of the Vaal Dam discharge and Suikerboschrand River at its confluence with the Vaal River

The comparative mineral load data are presented graphically in Figures 7 and 7A, pp. 63, 64.

Observations

- (a) The TDS of the Suikerboschrand River, like that of the Klip River, is affected by seasonal rains. There is an immediate increase at the beginning of the rainy season, with continual fluctuations throughout the season. The maximum TDS during the period of the survey was 2,540ppm, recorded in November, 1952, whereas the minimum was 73ppm, recorded in February, 1953. This latter figure, however, was recorded when only the Suikerboschrand River was in flood and the flow in the Blesbokspruit was low.
- (b) Increase in flow during the wet season resulted in general increase in the TDS concentration, and here again the increase in the dissolved mineral load was entirely out of proportion to the flow in the river. In the Vaal River, however, the TDS concentration remained remarkably constant throughout the sampling period and the increase in dissolved mineral load was in proportion to the flow in the river see Figure 7A, p. 64.
- (c) As in the case of the Klip River, the heavier mineral load carried by the Vaal Dam discharge, and the lesser load of the Suikerboschrand River, were not in proportion to the respective flows. This is illustrated by the following examples:
 - (i) On 15th December, 1952, the Suikerboschrand River was in flood and its flow was equal to that of the Vaal River. Yet its observed mineral load was more than 16 times that of the Vaal River.
 - (ii) On 12th January, 193, the flow of the Vaal River was approximately three times that of the Suikerboschrand River, yet its observed mineral load was only one fifth that of the Suikerboschrand.
 - (iii) During the dry season, the observed mineral load of the Vaal River always exceeded that of the Suikerboschrand, but not in proportion to its different flow. On 5th May, 1952, the total mineral load of the Vaal River was twenty times that of the Suikerboschrand River, yet its flow was 300 times as great.

As in the case of the Klip River, the excessive mineral load of the Suikerboschrand River can only be explained by heavy mineral pollution.

Mineral pollution

Unlike the Klip River system, the Blesbokspruit and Suikerboschrand River do not carry much natural spring water. Consequently, the effects of mineral pollution are much more obvious, as evidenced by the exceptionally high TDS concentrations during both dry and rainy seasons. Mining and industrial effluents are discharged directly and indirectly into the Blesbokspruit almost as far down as its confluence with the Suikerboschrand, and the dilution afforded by natural springs, particularly during the dry season, is negligible. The natural flow from the Suikerboschrand exerts a significant diluting effect only during the rainy season. indicate that a substantial reduction in mineral load of the Blesbokspruit occurs between Heidelberg and the Suikerboschrand confluence. the Blesbokspruit for irrigation purposes is one of the main reasons for this reduction in mineral load. It may, however, be stated here that the prolonged use of this water for irrigation will result in irreparable damage to the soil.

The complexity of the Blesbokspruit system and the limited technical assistance available did not permit a sufficiently detailed recording of mineral load data. The mineral load data presented in Figures 7A, 8 and 10, pp. 64, 65, 67, therefore, although presenting the same general picture as for the Klip River, do not reflect the true mineral load contributions during the rainy season. Thus, for example:

(a) On 16th and 23rd February, 1953, both the Vaal and Suikerboschrand Rivers were in flood but the Blesbokspruit carried only a small flow. Consequently the observed mineral load for point Gl8a - Figure 8A, p. 65 - on these dates consisted mainly of natural dissolved solids (see page 54 for Suikerboschrand River data). The TDS concentration of the combined flows from the Blesbokspruit and the Suikerboschrand was almost identical with that of the Vaal River water.

- (b) On both 5th and 6th January, 1953, the Blesbokspruit at Heidelberg carried a mineral load of 400 tons per 24 hours (Figure 10, p.67). Yet less than 100 tons were recorded before the confluence with the Vaal River Figure 7A, p.64. This reduction was roughly in proportion to the decrease in flow.
- (c) On 25th February, 1953, the Blesbokspruit (Figure 10, p.67) carried an observed mineral load of 600 tons per 24 hours. No corresponding analytical recordings were made at the Vereeniging sampling point Figure 7A, p. 64; flow recordings, however, indicated that this mineral load actually reached the Vaal River.

As in the case of the Klip River system, data for the Blesbokspruit area indicated two main types of dissolved mineral pollution, viz regular effluent discharge and accumulated mineral load. The characteristics "f these two types of pollution are similar to those in the Klip River system. In comparing data for the Blesbokspruit and Suikerboschrand sampling points, viz. Gl8a and Gl5b, with those for the Klip River after its confluence with Natalspruit (see page 45 and Table 27, p.50), it appears at first that the Natalspruit system carries a much heavier mineral load.

This conclusion, however, is shown to be somewhat controversial, if the dry season data for the Small Blesbokspruit (Table 30, p. 52) and for the Cowl's Dam overflow (Table 31, p. 52) are carefully examined. These two systems, apart from minor mineral effluent contributions from the Vlakfontein stream and other sources in the Heidelberg area, drain the bulk of their mineral load from industrial and mining areas. By totalling the dry season data for these two systems (Tables 30 and 31, p. 52), it can be shown that during the dry season the Klip River - Natalspruit system carries 50 per cent more mineral load than the Blesbokspruit - Suikerboschrand system.

For the rainy season no conclusion could be drawn as to the relative mineral load contributions by the Klip River and Blesbokspruit systems, since fluctuations were wide and frequent and too limited a number of

samples was taken for a statistical evaluation to be made. The maximum accumulated mineral load of 2,385 tons reported in Table 28, p. 50, was recorded on 15th December, 1952. Subsequent to this date higher flows were gauged in this system, but no samples for analysis were taken. Consequently it is impossible to conclude that the reported figures were the true maximum.

CHAPTER FOUR/.....

CHAPTER FOUR

THE TOTAL EFFECT OF EXCESS MINERAL LOAD CONTRIBUTIONS BY
THE KLIP RIVER AND THE SUIKERBOSCHRAND RIVER SYSTEMS ON
THE VAAL RIVER WATER AS SUPPLIED TO THE CONSUMER ON THE
WITWATERSRAND

The results of the quantitative survey indicated two main types of unnatural mineral load contributions:

Regular mineralized effluent discharges; and Accumulated mineral salts.

The total mineral load resulting from contributions of these two types constitutes the total excess mineral load discharged into the Vaal River by the two river systems surveyed. The second type of mineral pollution is the most significant quantitatively and manifests itself only during the rainy season or other wet periods. This accumulated mineral load is many times greater than the load carried by regular effluent discharges. The cumulative effect of the total excess mineral load derived from the two sources mentioned on the quality of the Vaal River water and the water supplied to the Witwatersrand, becomes of paramount importance. The water is no longer of the quality required for many usages, and as a result water conditioning systems have to be designed for industry to deal with the big differences in quality.

The effect of total excess mineral and hardness loads on the Vaal River water

The total excess mineral and hardness loads discharged by the Klip and Suikerboschrand River systems into the Vaal River are presented graphically in Figures 13 and 14, pp. 70, 71.

The data illustrates quite clearly the effect of increased run-off water on the mineral and hardness loads carried by these two river systems:

- (a) During the dry season the excess mineral load contribution is at a minimum since there is no run-off water to leach out accumulated mineral salts. During this period excess mineral load contributions are mainly from regular effluent discharges and, judged by the low TDS of the Vaal River, the polluting effect is at a minimum.
- (b) During the rainy season both TDS and total hardness (T.1) in the Vaal River increased very rapidly and the normal diluting effect of flood waters was not noticeable at all. This unnatural increase in TDS and TH of the Vaal River water always occurs simultaneously with the heavy contributions of excess mineral and hardness loads from the Klip and Suikerboschrand Rivers.
- (c) It can be observed from Figure 14, p. 71, that the excess hardness load contributed by the Klip and Suikerboschrand Rivers is in direct proportion to their excess mineral load contributions. As a result of the very heavy excess mineral and hardness loads that these rivers contribute to the Vaal, this phenomenon manifests itself even in the resultant Vaal River water. Figure 15, p. 71, illustrates quite clearly that the increase in TDS is directly proportional to the total hardness. This proportionality is futher clearly illustrated by the mirror image relationship of Figures 18 and 19 (p. 74) for excess mineral load and total hardness. Furthermore, this observation is compatible with current knowledge (only recently established) of chemical and microbiological reactions which occur when pyritic material in underground workings of mines, in slimes dams and sand dumps, comes in contact with air and the forces of nature.

The effect of total excess mineral and hardness loads on the water supply to the Witwatersrand

2

In order to evaluate the relationship between the TDS and TH of the Vaal River water after confluence with the Suikerboschrand and Klip Rivers,

and of the purified water supplied to the Witwatersrand, tap water samples were analysed daily during the period of the quantitative survey (pp. 43 - 6.). Figures 16 and 17, pp. 72, 73, illustrate the relationship clearly, and show that any changes in the TDS and TH of the Vaal River water are proportionately reflected in the purified water supplied to the Witwatersrand.

From the foregoing considerations it is, therefore, quite clear that the excess mineral and hardness load contributions by the Suikerboschrand and Klip Rivers are entirely responsible for the steep increase in the mineral content of the Witwatersrand's water supply during the rainy season. These observations are illustrated in Figures 18 and 19. p. 74.

Figures 18 and 19, p. 74, also give a quantitative assessment of the excess mineral salts in the water supply to the Rand, which originate entirely from the unnatural excess mineral load contributions by the Suikerboschrand and Klip River systems.

The excess mineral load contributions occur mainly during the rainy seasons when, according to the data recorded on pp. 43-63, thousands of tons of mineral salts are leached from industrial areas.

During the dry season, when excess mineral load contributions originate mainly from regular effluent discharges, the water supplied to the Rand is at its best and the effect of these excess mineral salt contributions is hardly noticeable.

The effect of excess mineral salts on water uses in the Witwatersrand

For purposes of evaluating the effect of mineral salt pollution on the Witwatersrand water supply, the uses of water on the Rand can be classified into two main categories:

Domestic use

The effect of the quality of the water on its use for domestic purposes can be assessed on the basis of the excess hardness carried by the

water (Figures 18 and 19, p.74) as well as by increased dosage of chemicals required for water purification.

(a) Table 33, p. 53, was compiled from records of the Rand Water Board and illustrates very approximately the relationship between TDS and aluminium sulphate dosage. Lime dosage and recarbonation data have not been analysed since very little significant variation has occurred.

In compiling Table 33, p. 53, the exceptionally high aluminium sulphate dosages recorded during the period 17th to 28th December, 1952, were ignored; they are recorded in Table 34, p. 54. During December, 1952, high mineral load contributions were recorded as a result of heavy rains. The quality of the Vaal River water changed considerably and there is no doubt that the high aluminium sulphate dosages were necessitated by this change. The TDS concentrations reported in this Table were determined on spot samples. It is known that very wide fluctuations may occur between consecutive determinations.

- (b) The increase in soap consumption caused by an increase in total hardness of water is detailed in Figure 20, p.75, which was prepared from data published in 'Water treatment for Industrial and other Uses' by Eskel Nordell⁵, p. 52.
- (c) According to the records of the survey, the average total hardness of the Vaal River water before contamination with excess mineral salts is between 30 and 50ppm, and during the dry season when these effects are at a minimum the average total hardness of the Witwatersrand water supply is approximately 70ppm (Figures 18 and 19, p. 74). If this latter amount is accepted as a normal limit (i.e. including the small effects of regular effluent discharges) the increase in the daily soap consumption by an increase in the TH of the Rand's water supply, could be determined from Figure 20, p. 75.
- (d) On the Witwatersrand the average water consumption is 70 gallons per head per day (White and non-White population). It is generally accepted that of this one gallon of water per head per day reacts with soap.

Therefore, 1/70 of the daily supply of Vaal River water to the Rand reacts with soap, namely approximately 1.5 million gallons. Figure 21, p. 75, was prepared from these data and serves to show the costs resulting from the increase in daily soap consumption caused by the unnatural increase in the TH of the water supply to the Rand. It is quite likely that this increase in hardness will encourage the domestic consumer to use synthetic detergents. Experience has shown that where softened water is supplied to a community, soap is used in preference to synthetic detergents.

(e) The rise in the TH during the rainy season results in an increase in the scale-forming properties of the water. It is logical to expect undue scaling of household hot water systems during such periods.

Unfortunately, no statistics have been compiled on which to base estimates of the daily costs which the population of the Rand has to face for repairs and damages to hot water systems resulting from increased scaling.

Industrial use

The varied industrial activity on the Rand requires, in addition to the data collected up to the present, somewhat more specific information for an evaluation of the costs to industry caused by the sudden and material changes in water quality during the rainy season. It is, however, possible to make a few observations on the effects of these changes in water quality on equipment and pre-treatment costs generally.

(a) Cost and other implications due to an increase in total hardness

The formation of scale in boilers and cooling water systems gives rise to heavy treatment and supervision costs, damage to equipment and loss of power. The hardness of the water supply to the Rand increases very materially during the rainy season as will be seen from Figures 13 to 19, pp. 70 to 74; the most alarming feature of this change is its unpredictable suddenness and magnitude. Consequently industry has to face, in addition to high treatment costs, heavy investments in elaborate and flexible plant, the maintenance of which also involves heavy expenditure.

(b) Technical implications due to an increase in TDS concentration

Quite apart from hardness, the TDS concentration in the water supply of the Rand, with all its unpredictable characteristics, constitutes a constant source of worry and expenditure. This is because steam and power-generating plants, and cooling and evaporator installations require water with a constant TDS. Where an increase in TDS necessitates blow-down or bleed-off operations, a low dissolved mineral content is of primary importance. Blow-down and bleed-off operations necessitate the provision of make-up water with its concomitant treatment costs and problems, and also result in unavoidable loss of valuable heat.

(c) Secondary treatment by certain industries is necessitated to acquire water conforming to their own specific requirements

Many other types of industries such as textile factories, canneries, mineral water factories, ice factories and process industries require water of specific quality and each industry has to treat the water to make this conform to its own specific requirements. The TDS and TH in the water supply are determining factors in the treatment costs. A few specific examples are quoted to show the extent to which the concentration of dissolved mineral matter in water affects costs of water treatment and make-up water.

(i) Cooling water blow-down:

A cooling-water plant with a designed circulation capacity of 156,000 gallons per minute and with a continuous automatic blow-down, at a TDS of 1,200ppm, may require the quantities of make-up water for different TDS concentrations in the raw water intake that are presented in Table 35, p.54.

In the absence of pollution by excess mineral load contributions the TDS of the water supply to the Rand should not exceed 150ppm. Therefore, any increase in costs, for operating cooling-water systems necessitated by an increase in the TDS of intake water beyond 150ppm, must be regarded as the result of mineral pollution of the Suikerboschrand and Klip Rivers.

(ii) Boiler blow-down (Hypothetical illustration):

A boiler producing steam at a rate of 10⁶ lb per hour at 400 to 500lb per square inch, with 70% make-up water and a continuous blow-down at a TDS of 2,000ppm, would require the rates of blow-down for different TDS concentrations in the make-up water as listed in Table 36, p.55.

As in the case of cooling-water blow-down, any increase in costs necessitated by an increase in the TDS and TH of the make-up water beyond 150 and 70ppm respectively, must be attributed to mineral pollution.

(iii) Ion exchange processes:

Table 37, p.55 illustrates the type of relationship between TDS concentration of a water supply, and costs of chemicals and depreciation of ion-exchange materials, in a complete demineralization plant.

In the case of ordinary base-exchange processes using sodium chloride for regeneration, Table 38 gives an example of the type of relationship between the TH of the water and the costs of chemicals and depreciation of base-exchange material.

Observations and discussion of the effects of pollution

The results of the present survey indicate quite conclusively the effects of the mineral pollution of the Vaal River on the quality of the water supplied to the Rand.

The outstanding features of this present evaluation of the effects of mineral pollution of the Suikerboschrand and Klip River systems on the Vaal River water and the Witwatersrand water supply, can be summarized as follows:

(a) During the rainy season, the mineral composition of the water supplied to consumers and industries is subject to alarming and unpredictable

fluctuations. This variable nature of the Rand water supply is imposing a serious burden on industry.

- (b) Quite apart from the sudden and wide variation which occurs, the magnitude of the total hardness and the total dissolved solids of the Rand's water supply must contribute materially towards increasing running costs within industry.
- (c) There is no doubt that domestic consumers, as a whole, have to face certain costs as a result of mineral pollution. Increased consumption of detergents and cleansing materials, increased depreciation of clothing due to washing in hard water, and repairs to domestic equipment due to scale formation cannot be regarded as insignificant when one takes the whole population into consideration. The details for soap consumption given in Figures 20 and 21, p. 75, illustrate this quite clearly.
- (d) The effects of mineral pollution are confined mainly to the rainy season when the accumulated mineral salts are leached from industrial areas. A most outstanding finding of this survey is that the effects of accumulated mineral load contributions to the Vaal River are of alarming magnitude, many times those of regular effluent discharges.
- (e) The effect on the Vaal River water of mineral salt contributions from regular effluent discharges is exceedingly small and insignificant when compared with that resulting from accumulated mineral load contributions.
- (f) The results of the whole survey, and the present evaluation of the relative effects of different mineral contributions to the Rand's water supply, indicate quite conclusively that regular effluent discharges present a mere facet of the problem of mineral pollution arising from industrial activity within the catchment areas of the Suikerboschrand and Klip Rivers. In fact it is an insignificant part of the whole problem of the accumulation in mining areas of mineral salts (acid and ferrous sulphate included). Any future investigations into mineral pollution of the Vaal River by the Klip and Suikerboschrand streams must be directed towards towards finding a solution to the problem, or practical means of minimizing

the access of these salts to the streams.

- (g) The need for investigation, and the extent to which the problem of mineral pollution should be investigated, are determined by four main factors:
 - (i) the total costs which the domestic consumer and industry have to pay annually for mineral pollution;
 - (ii) the limitation which mineral pollution imposes on the exploitation of the Vaal River, particularly as regards re-use of water;
 - (iii) evaluation of codes of practice for the management of the release of high accumulated mineral loads during rainy periods; and
 - (iv) the implementation of codes of management of effluents on mining property, of codes of construction of slimes dams and of codes of closure of mines, with due regard to the factors which are responsible for the oxidation of pyritic material.

In this connexion it should be noted that the present magnitude of pollution from mines is not so much attributable to a general slovenliness in regard to effluent management, as to the lack of exact quantitative information with respect to the role of slimes dams, sand dumps and of the oxidation of pyritic material. This data is now available and the core of the problem has been identified, consequently mining industry could be assured of the success of corrective measures.

CONCLUSIONS

General

The results of the survey show that both the Klip River and the Suikerboschrand River systems are polluted. The principle pollutants are mineral and acid accretions from various sources together with sand which accumulates on the river beds. The mineral pollution loads carried by these streams, have a marked effect on the quality of the Vaal River, particularly during the rainy season.

Sources of Pollution

The worst pollutants are derived from the erosion of slimes dams and dumps and the oxidation of pyritic material to sulphuric acid and iron sulphate with the concomitant leaching of salts from mineral material. This chemical pollution is aggravated by the accumulation of mineral salts which do not reach the streams in the dry season but are washed into the river during the rainy season, so that quite contrary to expectations, the effects of pollution on the river are much more pronounced in the rainy than in the dry season. Another major source of mineralization of streams during the rainy season is the irregular discharge of large volumes of penstock water from slimes dams. Briefly the worst pollution effects are due to run-off waters carrying accumulated mineral salts into streams during the rainy season.

The effects of regular effluent discharges (see page 11) as reflected by data of the dry seasons, are of secondary importance as far as the quality of the Vaal River is concerned. During the dry season, the dilution capacity of natural flows, purified sewage effluent and of certain industrial effluents are quite adequate to maintain the mineral quality of the water in the Klip River, the Blesbokspruit and the Suikerboschrand River (after confluence with the Blesbokspruit) at the acceptable levels for a second grade water. (2,7,9)

Industrial effluents from a variety of sources other than mining property, enter these streams and pollute them. Agricultural pollution also occurs to an appreciable extent.

River Recuperation

The recuperative powers of a river are highly dependent on the fauna and flora in the river water and the benthic organisms in the mud deposits. Under favourable conditions, this biological life can effect purification of organic pollution to a marked extent. Destruction of these organisms reduces the self-cleansing capacity of a river.

Long stretches of river bed have been observed in which biological life was completely absent because it had been smothered by mine sand or exterminated by highly concentrated mineral and acid 'slugs' passing down the river.

The problem

The main pollution problem arises when erosion from slimes dams, sand durps and mineral and acid accretions mentioned previously, enter the streams. Not only do they destroy the organisms which bring about natural biological purification of the organic pollutants but they also impair water quality. To overcome this second problem the pollutional load must be removed or prevented from entering the river, or it must be controlled so that it enters the river at such times when the deleterious effects are minimal. To implement such control would require large capital expenditure and engineering skill. The problem would be less complex if the main pollution occurred at times of low flow since storage and controlled discharge would balance 'shock' discharges of pollutants into the streams.

The analyses of water supplied to consumers clearly reflects the necessity for special purification treatment, consequently the high costs which will be incurred in protecting the quality of the water supplied to

domestic and industrial users, warrant early planning of remedial measures. Coupled with the fact that the Vaal River's ultimate capacity will be reached within the next 30 years, the problem becomes quite urgent since mineral pollution has a deleterious effect on the value of water for re-use, a factor which could have a limiting effect on the exploitation of the full capacity of the water resources of the Vaal River for industrial, domestic and agricultural purposes.

RECOMMENDATIONS/.....

RECOMMENDATIONS

It was not within the scope of this survey to examine the possible solution to the problems outlined above. This would require research and fact finding of a different nature, probably in the fields of civil engineering, mine management and legal administration.

The problem has been formulated, however, and it is suggested that the following avenues should be explored further:

(a) Continued survey work

The survey needs to be reinforced by further sampling to reveal specific tendencies with respect to flows carrying heavy mineral loads. Some sampling was done at certain key points after the completion of this survey and valuable results were obtained which are to be used in planning a pollution abatement programme. The need for continuing such sampling is stressed here.

(b) Control of pollution at the source

It would be appropriate if a thorough investigation were made into the conditions in mines and industries where the mineral pollution, especially the accumulated mineral salts and sand from mine dumps which are washed into watercourses by rain, originates. Such an investigation could best be carried out by the polluters themselves and any remedial measures necessary applied by them. A code of practice involving special techniques for the abatement of pollution, administered by a central controlling body, could serve as a major step towards improving the quality of the streams.

(c) Major supplementary measures for the abatement of pollution

While much can be done towards keeping undesirable effluents out of the river by the measures suggested above, it must be realized that the rivers will remain polluted. The pollution will originate from accumulated

mineral loads and sand from abandoned mine dumps and mining sites when they are washed over by storm-water and from water pumped from old mines.

Some method must be found for dealing with the pollutants from these sources, still present in the river.

When the graphs linking mineral load with time, are studied, a feature which is immediately noticeable, is that very sharp peaks occur immediately after rainfalls. This would suggest that although heavy mineral loads are carried down the river immediately after rainfall, this only happens for periods of short duration.

The value of storage dams for holding back these shock admissions of pollution should be investigated. It seems that dams of large capacity are unnecessary since only peak-flows of run-off should be considered. The following benefits which would accrue from such storage dams could well justify their construction economically:-

- (i) 'Balancing' dams in the tributaries draining into the Vaal would hold a good second-grade quality water suitable for many industrial uses. There would be a better utilization of water because of the improved quality of water in the river systems and in the Vaal River. Industry and agriculture would both benefit by this diversion of second-grade waters.
- (ii) The disposal of effluent into streams and drains above the dams could be allowed greater latitude than is otherwise possible. The whole aspect of pollution control would be placed on an organized basis.
- (iii) These dams would be available as recreation centres for varied types of water sport. There are in fact a number of thriving recreational areas in these river catchments and these could be exploited to the benefit of the community.

- (iv) The whole East and West Rand is known to have subterranean dolomitic compartments of almost limitless capacity, suitable for storing water. This national asset, which would be of great value in times of war, must sooner or later be used as an immense evaporation-free storage reservoir. The acid-laden and mineralized waters originating in mining areas on the Witwatersrand must be prevented from penetrating these dolomitic compartments, otherwise they will be rendered useless for the aforementioned purpose. The balancing dams would serve admirably to ensure that only good quality water reached the dolomitic compartments.
- (v) In cases of emergency (during war, for example) a whole series of small dams from which emergency supplies could be drawn, would be available.
- (vi) The costs of the secondary purification of water to suit specific requirements of industry would be considerably reduced.

(d) Research

The problem of the oxidation of pyritic material with the concomitant production of waters carrying, in accordance with environmental circumstances, high concentrations of iron sulphate, sulphuric acid, sulphates of calcium and magnesium, will always be present. The ultimate elimination of pollution could only flow from results of research on these problems.

Research into four main directions seems necessary:-

- (i) desalination aimed at removal of sulphates from concentrated effluents:
- (ii) elimination of air penetration into slimes dams by e.g. establishment of vegetation, clay walling, and reducing moisture content;
- (iii) inhibition of sulphur oxidizing organisms, e.g. in copper mines, where pyritic material also occurs, this oxidation process is at a minimum or absent; and
- (iv) recovery of pyritic material.

CO-WORKERS

- G.R. Botha, N.I.W.R. Now Synthetic Rubber Co., Sasolburg.
- R. Snyders, N.I.W.R. Late Bio-Chemist, Municipality of Worcester.
- E.G. White, City Chemist, Johannesburg.
- P.R. Krige, City Bio-Chemist, Germiston. Now N.I.W.R.
- R.J. de Boer, Bio-Chemist, Brakpan.
- J. Heynike, Bio-Chemist, Springs. Now I.S.C.O.R.
- J.J. Barmard, N.I.W.R. Now City Bio-Chemist, Germiston.
- J.D.M. Anderson, Town Bio-Chemist, Nigel. Now Durban.
- S.R. Caplan, N.I.W.R. Now Weitzman Research Institute, Israel.

ACKNOWLEDGEMENTS

- (1) The Department of Water Affairs for the erection of weirs and gauging stations and the preparation of discharge tables.
- (2) The Rand Water Board, for making available records of flow and analyses for inspection.
- (3) The Chamber of Mines for arranging flow measurements at some of the gauging stations.
- (4) The municipalities of all the Reef towns for their assistance in sample analysis and recordings of flow.
- (5) Miss B.C.M. Jackson, Miss D. Sampson and Messrs. G.S.F. Botha and P.O. Finsen, for their kind assistance in analysing samples.
- (6) Messrs. M.R. Henzen, P.T. Viljoen and C.S. Bredekamp of the N.I.W.R., for editing this report.

REFERENCES/.....

REFERENCES

- 1. BOND, G.W. A geochemical survey of the underground water supplies of the Union of South Africa, with particular reference to their utilization in power production and industry. Geological Survey, memoir no. 41, Pretoria, Government Printer, 1947, 234 p., maps.
- 2. HENZEN, M.R. and STANDER, G.J. C.S.I.R. Special Report W16, 1962, 42 p., tables, diagr., maps, bibliog.
- NATIONAL LESTITUTE FOR WATER RESEARCH. Ecological studies on Olifantsvlei, near Johannesburg. Hydrobiologia, vol. XV, nos. 1 - 2, 1960, pp. 89 - 134, bibliog.
- 4. NATURAL RESOURCES DEVELOPMENT COUNCIL. Report on the water supplies of the Vaal River in relation to its future development. 1953 Report.
- 5. NORDELL, Eskel. Water treatment for industrial and other uses. New York, Reinhold publishing corp., 1951, 526 p.
- 6. SHEEN, R.T. and others. Turbidimetric determination of sulphate in water: Betz-Hellige method. Industrial and engineering chemistry (analytical edition) vol. 7, 1935, pp. 262 265.
- 7. SOUTH AFRICAN BUREAU OF STANDARDS. Specification for water for domestic supplies. S.A.B.S. 241, 1951.
- 8. STANDARD METHODS FOR THE EXAMINATION OF WATER AND SEWAGE. 9th Edition.

 New York, American Public Health Association, 1947, 286 p.
- 9. WORLD HEALTH ORGANIZATION. International standards for drinking water, 1948, 29 p.
- 10. ZAHN, V. Determination of small proportions of sulphur. Industrial and engineering chemistry (analytical edition) vol. 9, 1937, pp. 543 550.

PRETORIA.
CSB/ZS/LL.
January, 1964.

INDEX

<u>A</u>		<u>D</u>	
accumulated dissolved mineral load	12	dissolved mineral load	10 6
Advisory Sub-Committee on Water Treatment	1	domestic use	66
aluminium sulphate dosage	67	dry weather flow	TO
amygdaloid, Klip River	6	dolomitic compartments	78
Angelo Pan	26		
ash disposal	20	E	
axis of uplift, Griqualand		Elsburg Dam	26
Transv.	5	Elsburgspruit	26
		excess mineral load	12
<u>B</u>			
bacterial pollution	1.3	<u>F</u>	
balancing dams	77	floating mineral oil	39
boiler blowdown	70	flow readings	9
boiler scale	68	Taon Tourning	,
Boksburg Lake	28	<u>G</u>	
<u>c</u>		gauging stations	9
Cambridge turbidimeter	9	Geduld Dam	33
Canada Dam	18	Griqualand-Transvaal	5
	5	axis of uplift)
Chamber of Mines		*	
Champ D'Or mine	15	<u>H</u>	
Cinderella Dam	28	hardness loads, total	64
clothing, depreciation of	71	Harringtonspruit	22
code of practice	76	hot water systems	68
Concordia Dam	18	Houtkopspruit	39
cooling water plant	69		
Cowls Dam	34		

Ī		<u>o</u>	
industrial use	68	oil, floating mineral	39
ion-exchange processes	70	Olifantsvlei	13
		organic pollution	13
<u>K</u>		Orlando Power Station Dam	20
Karroo rocks	5		
Kimberley shales	6	P	
Klip River amygdaloid	6	Pretoria series	6
Klipriviersberg	6		
		<u>R</u>	
<u>T</u>		rainfall figures	10
latitude	4	Rand Leases Dam	20
Laundry Dam	32	recreation	77
lime treatment plant	16	regular mineral pollution	52
longitude	4	Rietspruit	29
<u>M</u>		Rosherville Power Station Dam	24
_		run-off flow	10
mine dumps	16	Rynfield Lake	33
mineral-acid pollution	13		
mineral-load, accumulated	12	<u>s</u>	
mineral-load, dissolved	12	saprophytic bacteria	14
mineral-load, excess	12	scale in boilers	68
mineral-load, natural	11	Schwarzenbach method	9
mineral cil, floating	39		
mine sand	31	sewer, faulty	17
Mines, Chamber of	2	slimes dams	16
molasses slop	27	scap consumption	67
N		Special Committee for stream surveys	2
<u>N</u>		springs	7
Natalspruit	24	Stream Surveys, Special	
natural mineral load	11	Committee	2
natural vleis	13	storage dams	IJ
		Sub-Committee on Water Treatment	1
•		synthetic detergents	68

<u>T</u>	
tap water analysis	14
turbidimeter, photo-electric	9
$\overline{\Lambda}$	
Vaal Dam discharge	59
Ventersdorp lava	б
Victoria Lake	27
vleis, natural	13
<u>M</u>	
water consumption	67
water supply	65
Water Treatment, Advisory Sub-Committee	1
water uses	66
Wemmer Pan	24
wet weather flow	10
Witnest among marks	5

LIST OF CONTENTS

TABLES	Page	FIGURES
Table 1 Table 2 Table 3 Table 4 Table 5 Table 6 Table 7 Table 8 Table 9 Table 10 Table 11 Table 12 Table 13 Table 14 Table 15 Table 16 Table 17 Table 18 Table 19 Table 20 Table 20 Table 21 Table 22 Table 23 Table 24 Table 25 Table 25 Table 26 Table 27 Table 28 Table 29 Table 29 Table 30 Table 31 Table 31 Table 32 Table 33 Table 34 Table 35 Table 35 Table 36 Table 37 Table 37 Table 37 Table 37 Table 38	2 4 6 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 41 43 45 55 55 55 55 55 55 55 55 55 55 55 55	Figure 1 56 Figure 2 57 Figure 2A 58 Figure 3 59 Figure 3A 60 Figure 4 61 Figure 5 62 Figure 5A 62 Figure 6 63 Figure 7 63 Figure 8 65 Figure 8A 65 Figure 10 67 Figure 10A 67 Figure 12 69 Figure 14 71 Figure 15 71 Figure 17 73 Figure 18 74 Figure 20 75 Figure 21 75

TABLE 1. CHENICAL ANALYSES PIGURES OF THE WATERS OF THE UPPER KLIP RIVER AND KLIPSFRUIT - SECTIONS A AND B.

		<u> </u>		Dionic	Total	Sus- pended	Mixed	Total Hard→	Chlo-	Sul- phates	4 Hr. 0/A	Alka- limity	
No.	Sample	Flow	pΗ	cond. (micro- mhos)	solved solids (ppm)	solids (ppm)	orides (ppm)	ness (ppm CaCO ₃)	as Cl' (ppm)	as SO" (pps)4	(ppm)	(ppm) CaCO ₃)	Remarks
Sample	ed: 5,2,1951												
A la	Run-off from stone crusher	Trickle	7.0	1316	1046	52.0	5.0	1028	46.0	545	8.0	-	111111111111111111111111111111111111111
A 1	200 yds below old dam wall	Weak	3,1	3636	4820	13,0	1315	696	-	3420	83.0	-	
A 5a	Klip river before confluence with	Steady	3.2	1042	527	Trace	52.0	162	14.0	354	3.0	-	
A 5b	Roodepoort stream Roodepoort stream before confluence	Strong	4.8	1613	1470	142	61.0	696	42.0	1005	*22.0	-	*Organic pollution
A 5c	with Klip river Below confluence of A5a and A5b	Strong	4.5	1563	1369	121	60,0	665	39.0	980	18.0	-	
A 4a	Stream from Roode- poort dams	Steady	4.2	357	261	114	24.0	124	14,0	150	12,0	-	
A 4b	Stream from Roode-	Steady	4.6	2500	2460	104	128.0	1362	58,0	1700	24,0	-	
A 4c	poort Deep Below confluence of	Strong	4.3	2146	2037	140	114.0	1080	42.0	1590	20.0	-	
A 4e	A4a and A4b Sewage * effluent into combined	Steady	7.2	909	453	504	8,0	170	68.0	101	66.0	-	*Septic sewage
45' b	Roodepoort stream Stream N.of Doorn- kop entering Klip	Steady	8.5	204	139	21	3.0	93	Trace	Trace	Nil	-	
A 6c	river Klip river at Pot- chefatroom- Johannesburg road	Strong	3.7	1316	1008	Trace	23.0	510	24.0	675	2.0		
Some	led: 13.2.1951											1	
	Below lime treat- ment plant D.R. Deep stream	Steady	11.7	3846	2849	1066	nil	1712	65.0	1620	20.0	-)Sampled)after)heavy rain
A 4g	Immediately above lime-treatment plant	Steady	4.0	2410	2650	7.0	241	1475	85.0	2080	12.4	-)on pre-)vious)day.
Samp	led: 21,2,1951												
A4'a	Stream into upper Roodepoort dam from east	Steady	6.1	31	77	Trace	10.0	6.0	4.0	nil	0.4	10	
A41b	Stream into upper Roodepoort dam from north	Steady	6.4	74	77	Trace	7.0	10.6	8,0	nil	0.4	25	
A41c	Overflow from upper Roode- poort dam	Steady	6.9	161	135	12	12.0	53.2	12.0	nil	8.0	50	
A4'b	Stream running into lower Roode— poort dam from	Steady	7.4	460	-	-	-	-	44.0	-	92.0	81	Municipal records
A4'd	east Stream into lower dam from north	Steady	6.5	37	65	Trace	13.0	5.0	4.0	nil	2.4	15	
~	3-4. 23 2 222		Ī										
	Overflow from lower Roode-	Strong	6.5	123	107	Trace	6.0	21.2	10.0	Trace	2.4	22.6	
A4°f	poort dam Drainage from mine dump area into A4*e	Trickle	3,2	2439	2259	302	616	298	158	1360	27.0	-	
Samo	led: 27.2,1951		T				1		-				
Bl2c	Effluent from Blue Star dam at Antea	Steady	8,2	500	473	33	8.0	107	68	52	20.0	76	
BlOs	Stream flowing cast- ward from Marais- burg	Steady	4.5	455	430	Trace	19.0	174	14	88	nil	-	
В 9в	Influent to Canada dam from north	Strong	7.5	735	635	44	7.0	252	78	115	7.6	76	
B 9c	Effluent from Canada	Strong	4.8	1852	1248	Trace	25.0	1038	74	107	nil	-	
в 96	Influent to Canada dam from east	Steady	5.4	1667	2004	1	68.0	878	68	1190	5.6	-	
B 9d	Influent to Canada	Steady	8.5	2195	2235	-	26.0	1131	44	1094	57.6	147	Municipal
B 8b	dam from west Stream from Crown mines at Orlando	Steady	8.8	2703	3558	22	16.0	1622	134	1080	70.4	64	tacotas
B 3c	boundary Effluent from Rand Leases dam	Strong	8,0	1754	2166	1	10.0	1023	74	1400	0.4	26	

B3a/

(iv)
Upper Klip River and Klipspruit Survey - Sections A and B

TABLE 1

^^^	••					_							
Ho,	Sanple	Flow	pH	Dionic cond. (micro- mhos)	Total dis- solved solids (ppm)	Sus- pended solids (ppm)	Mixed oxides (ppm)	Total hard- ness (ppm CaCO ₃)	Chlo- rides as Cl' (pps)	Sul- phates as SO4 (ppm)	4 Hr. O/A (ppm)	Alka- linity (ppm CacO ₃)	Reparks
Samp	led: 27.2,1951	7											
	Stream from Durban Roodepoort Deep entering Rand	Steady	7.0	2062	2503	5272	41.0	760	80	1520	52.0	8	
В 3ъ	Leases dam Stream from Florida Lake entering Rand Leases dam	Trickle	8.0	465	429	2	5.0	160	26	49	0.4	186	
B 5a	Klipspruit above stream from Orlando dom	Strong	5.6	1786	2052	9	131.0	1023	70	595	4.8	-	1
B 5b		Steady	7.9	1020	829	12	4.0	292	162	570	2.4	116	
B5*b	Sewage irrigated land drainage — Piswille area	Steady	7.3	970	500	-	-	-	200	-	35.0	- 	Municipal records
	entering Klip- spruit	Steady	8,1	125	96	Trace	8.0	94	Trace	Trace	2.4	76	
	Effluent from Moroka contact beds	Steady	7.7	606	509	92	1.0	200	54	390	22.4	190	
В 7ь	Klipspruit crossing Potchefstroom road	Strong	5.9	1667	1946	Trace	102.0	1023	86	515	1.2	6	
See	led: 7,3,1951				<u> </u>								
	Storm-water drain from Fordsburg	Steady	8.8	4348		_	-	· -	-	-	1290.0	-) Small) samples
В18ъ	area Storm-water drain	Steady	7.3	500	-	-	-	_	-	-	89.6	-	taken
В19ь	from Market area Drainage from Robin-	Steady	3.4	5400	7480	-	1286	2125	122	3870	86.6	_]'
B17a	son Deep mine Storm-water drain from city at tar	Steady	7.6	1515	1014	224	11.0	390	-	140	72.4	310	
В17ь	plant, Booysens Stora-water drain from Turffontein at tar plant	Steady	4.2	2941	3451	200	421.0	1260	-	2460	46.4	-	
B16b	Canalized stream from south, approximately 300 yds below	Steady	6.0	2222	2168	74	46.0	1150		1510	3.2	12	
B15a	tar plant Discharge from Crown mines - above Concordia	Steady	6.5	1563	1580	81	11.0	800	-	950	48.4	90	
В14ъ	dam Stream into upper Concordia dam from south	Steady	6.6	488	389	Trace	13.0	110	70	110	8.0	54	
		<u> </u>			!	l	<u> </u>		<u> </u>			<u> </u>	
Samp?	ed: 7.3.1951							}		1		ļ	
B14a	Main stream enter- ing upper Con- cordin dam	Strong	4.7	2326	2613	824	280.0	1100	_	1690	28.8	-	
B13a	Stream into lower Concordia dam from north	Trickle	7,1	833	748	Trace	12.0	447	24	360	1.2	70	
Bl3c	Effluent from lower Concordia dam	Strong	4,0	2222	2413	8	71.0	; 1192	80	1600	nil	<u>-</u>	
	Harrington apruit leaving Olifants- vlei	Trickle	7.7	970	568	- -	7.0	_	180	-	11.2	260	Municipal records
A 7	Klip River at bridge - Johannes- burg-Vanderbijl Park rond	Strong	7.4	1660	1580	-	4.8	764	100	844	1.7	53	Municipal records
¥35		Strong	6,8	943	901	9	3.0	490	65	360	5,1	57.5	

TABLE 2 CHEMICAL ANALYSES FIGURES OF THE MATERS OF THE MATAISPRUIT, ELSBURGSPRUIT, RIETSPRUIT FROM BRAKPAN AND THE MIDDLE REACHES OF THE KLIP RIVER - SECTIONS C,D, CC AND A PORTION OF AA.

No.	Sample	pä	Dionic cond. (micro- mhos)	Total dis- solved solids (ppm)	Sus- pended solids (ppm)	Mixed oxides (ppm)	Total hard- ness (ppm CaCO ₃)	Chlo- rides an Cl' (pps)	Sul- phates as SO7 (ppm) ⁴	4 Hr. 0/A (ppm)	Alka- linity (ppm CaCO ₃)	Hemarks
Cla	Stream entering Wemmer Pan from south	6.8	278	210	Trace	7.0	100	26	44	1.2	44	
Clc	Overflow from Wesser Pan	4.0	645	581	Trace	11.0	240	48	440	7.0	-	
GSp	Run-off and seepage from direction of City-Deep Reduction Works	4.1	1389	1262	343	46.0	650	88	880	7,2	-	
Ç2c	Combined Clc and C2b at road bridge	3.6	1667	1677	33	397.0	480	56	1030	1.2	-	
СЗЪ	Seepage from slimes dam into Wemmer stream	8,3	2703	2874	5563	11.0	1690	126	1830	72.0	52	
C4a	Storm water drain (Natalapruit) at Wolhuter	4.6	1190	1151	105	32,0	560	120	870	62.0	_	
СБР	Stream entering Rosher- ville dam from north	5.5	2857	3112	146	14.0	2030	120	2080	32.0	12	
C5c	Overflow from Rosher- ville dam	5.3	2083	2167	Trace	18,0	1400	72	1360	1.8	10	
C7	Stream from Klipriviers- berg at road from Rosettenville to South Hills	7.0	65	60	Trace	14.0	30	10	Trace	1,2	18	
C6a C6c	Stream from Klipriviers- berg at Durban road Combined C5a and C6a	3.7	1075	950	Trace	48.0	450,	56	660	2.2	-	
свь	(Natalspruit) Goldenhuis stream at Rand Airport road	3.5	3333	3620	Trace	436.0	1680	184	1840	30.8	-	
		<u>' </u>		<u> </u>			·			L		<u> </u>
C12b	Run-off from mine south of Geldenhuis	4.0	3448	4084	254	500.0	3360	230	208	32.0	-	
C 9a	Stream from Oakdene, before entering Natalspruit	7.5	143	90	Trace	32.0	90	8	4.3	2.4	56	
C10a	Natalspruit before confluence with Elsburgspruit	3.8	2128	2015	Trace	82.0	1150	96	1440	1.8	-	
C10b	Elsburgspruit before confluence with Natalspruit	7.2	1923	1776	Trace	28.0	980	138	1110	21.6	108	
C10c	Natalepruit after confluence with Elsburgspruit				Not	sampled						<u> </u>
D 16	Storm water drain enter- ing Victoria lake from north-east	8.5	2632	3286	4075	20.0	1760	104	1820	26.4	8	
D la	Stream entering Victoria	9.4	3333	4388	955	22.0	2560	114	2355	Nil	35	
D le	Overflow from Victoria lake	5.5	-	4141	<u> </u>	-	-	89	-	0.8	-	Germiston Municipal records
D2p	Georgetown spruit in Germiston	6.9	71.4	601	Nil	10.0	329	304	110	2.1	100	Accords
D 5b	Overflow from dam in Dolmore valley	4.6	2500	3259	88	130.0	1930	24	1630	5.6] -]

D7a/....

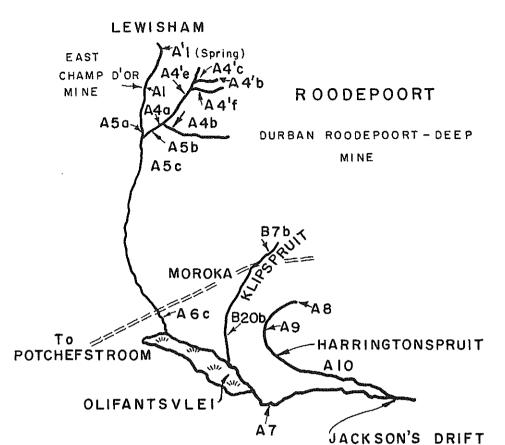
TABLE 2 (iii)

*****	^^		*									
No.	Sazple	þΨ	Dionic cond. (micro- mhos)	Total dis- solved solids (ppz)	Sus- ponded solids (ppm)	Mixed exides (ppm)	Total hard- ness (ppm CaCO ₃)	Chlo- rides as Cl' (pps)	Sul- phates as SO# (ppm) ⁴	4 Hr. O/A (ppm)	Alko- linity (ppm CaCO ₃)	Romarks
D 7a	Stream entering Angelo pan from north-west of Boksburg	4.3	6061	13110	11860	3664	2650	56	6520	452.0	_	
D 7c	Stream from Angelo pan entering dam 'B'	4.6	3175	4347	81	271.0	1978	88	2900	19.3	-	
D 6d	Stream from north entering dam 'B'	5.0	3030	3786	250	260.0	1382	192	2100	50.3	7.5	
D 6f	Stream from north of Angelo station before dam 'A'	4.3	3333	4480	100	79.0	2234	96	3000	7.3	Nil	
D 6e	Stream from west entering D6f	4.7	909	1281	538	128.0	277	136	475	134.8	nii	
D6b	Overflow from dam 'A' Seepage from dam 'B'	3.5	3030	3690	Not Nil	sampled 125.0	1798		1840	6.4	l	
D 6c	Combined Déa and Déb	4.6	2857	3752	47	362.0	2350	112 72	2180	29.6	NII	
D 3c	Elsburgspruit after confluence with Victoria lake effluent	4.7	2273	2729	16	108.0	2030	80	2000	12.4	-	
D 4b	Overflow from Cinderella	4.5	1961	2085	Trace	69.0	1038	80	1450	14.8	-	
D10b D 9a	Effluent from Satmar. Run-off from ERPN entering Satmar effluent	9.4	1667	1711 No	244 run-off s	6.0 t time of	209 Sampling	226 :	288	504.0	255	
DВ	Overflow from Boksburg lake	4.3	526	476	Truce	30.0	308	28	304	3.2	-	
D12b	Rondebult Purification	7.0							1			
D150	Works seepage water	7.0	-	1020	-	-	-	131	-	11.5	-	Germiston municipal records
CIIP	Rietspruit before entering Natalspruit	7.9	590	369	Trace	Ni1	278	26	119	2.8	210	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
CC1	Rietspruit below van Dyk's mine southern shaft	7.4	1613	1438	Trace	Nil	627	86	804	1.3	78	
CC2	Stream from S.A. Lands mine before CCl	7.3	1429	1210	Nil	Nil	574	142	596	3.6	34	
AAlb	Natalapruit before Klip river	8.2	1408	1476	Trace	3.0	830	83	590	-	62.5	
AAla	Klip river before Natalspruit	7.9	1050	796	Trace	Nil	463	90	364	1.4	132,0	
AAlc	Klip river after confluence with Natalspruit	8.2	1117	1106	6	5.0	620	82	420		122.5	
ــــــــــــــــــــــــــــــــــــــ					.		<u> </u>	<u> </u>	<u> </u>	<u> </u>	l	<u>}</u>

5

Chemical analysis figures of the waters of the upper tributary of the Blesbokspruit, the Blesbokspruit and the Small Blesbokspruit in the Springs area, the Blesbokspruit in the Migel-Heidelberg area, the Suikerboschrand river and the Lower Klip river. (Sections E,F,C and AA)

Billing		-		poschi		r and th	e Lover	Юip riv	er. (S	ections	E,F,C an	d AA)		
Second	No.	Sample	Flow	Щq	cond.	dis- solved solids	pended solids	oxides	hard- ness (ppm	rides es Cl'	phates	0/A	linity (ppm	Rezarko
### Special States State S	Samp	led: April to July, 19	<u>51</u>]									
2 35 Second stream Steady 7.2 277 229 8 120 59 40 7 7 7 7 7 7 7 7 7	E115	confluence with	Weak	8.1	963	698	118	27	380	124	66	13.2	_	
1	E 36	Benoni stream		7,2	227	232	8	120	55	40	Trace	5.2	-	
2 % Common street London Common Commo	E 3a	Storm water drain	Steady	7.7	1100	680	8	10	198	140	123	9.8	308	
2 50 Second streem before enchance with enchance with a control of the control	E 3c	Effluent from Laundry dam below		7.4	2273	2762	296	11	1510	68	1800	4.0	-	
### 25 Steam For Reddendendendendendendendendendendendende	E 5a	Benoni stream before confluence with				н	1 ot f1 	 Owing 						
### 25 April Process P	E 56	effluent	Yosk,	7.2	769	688	Trace	7	320	72	205	8,8	_	
## 75 Second stream offering Steady 3.1 3175 3509 Trace 256 1540 64 2500 2.0 -	E 5d		Steady	5,6	1853	2063	50	13	970	64	1260	37.6	_	
E 7a Stream From Brichoun and Steady 3.8 5046 4792 501 265 2640 100 5000 48.0 -		Benoni stream				ŀ								
Second collection	Е 76		Steady	3.1	3175	3509	Trace	258	1540	64	2300	2.0	-	}
E 60 Vator pumped free Enterland/Gabe to E 80 Furrow defining free State mines into Geduld dam for Geduld	E 7a	mine entering	Steady	3.8	3846	4791	301	205	2640	100	3000	48.0	-	
E 60 Vator pumped free Enterland/Gabe to E 80 Furrow defining free State mines into Geduld dam for Geduld			 	1	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u>!</u>	<u> </u>		<u> </u>	<u> </u>	
Enclose	Samp	l led: April to July, 19	1 <u>51</u>											
E En Purew draining from Steady 6.9 268 1182 300 11 450 134 490 44.0 -	68 a	Brakpan/Yake to						Not	l flowing					
### Same Parter for Gealid and Entering Geduld dam Entering Geduld dam Contenting Geduld	£ 8a	Furrow draining from State mines into	Steady	6.9	1282	1182	300	11	450	134	490	44.0	-	
### See Gealuld dam overflow Steady 5.1 3448 3942 4 560 540 680 200 3000 Nil	E 9a	Furrow from Geduld mine, No. 7 shaft	Steady	8,0			63						-	
### 28-64 Stackpan Sawage Works of Strong of		Benoni stream												
Black Blac	E 8d	Brakpan Sewage Works	Steady	7.2	850	438	51	30	181	72	88	11.8	240	
### Printings from rock dusp at Syrings since ### Syrings since ##	Ellc	Blesbokspruit at bridge on Springs-	Strong	7.2	2083	2471	82	22	970	600	980	19.0	-	
## Saall Response Part	F 3b	Drainage from rock dump at Springs	Weak	2.8	17240	56530	Trace	18585	4360	200	33000	11.2	-	
P 2a Ancor sewage effluent Stoady 7.0 625 422 26 Trace 170 88 113 18.8 76 11.6 50 50 50 50 50 50 50 5	F 2b	Small Blembokspruit before confluence	Steady	3.6	3448	3439	-	58	820	93	1950	10.5	-	
P 2a Ancor sewage effluent Stoady 7.0 625 422 26 Trace 170 88 113 18.8 76 11.6 50 50 50 50 50 50 50 5	=		<u> </u>		<u> </u>	<u> </u>		<u> </u>						
Bleebokapruit after confluence with Serong confluence with Small Bleebokapruit Small Bleebokapruit Strong confluence with Small Bleebokapruit Small Bleebokapruit Small Bleebokapruit Small Bleebokapruit confluence confluence confluence confluence co	Samp	led: April to July, 19	<u>51</u>						,					
Strong Calcular		Bleebokspruit after confluence with												
### Color	G 1c	Blesbokspruit at causeway near	Strong	6.8	2439	1997	-	13	810	368	795	5.4	68	
G 4c Vlakfontein stream at bridge on Springs-Higel road Slimes dam seepage: Slub-Higel mine, Betty shaft Slames dam seepage: Slub-Higel mine, Betty shaft Slames dam seepage: Strong on the of Migel Strong on the of Migel Strong on the of Migel Strong of the other stream entering dams north of Migel Strong of the other stream at Higel-Heidelberg road Slessbokspruit before confluence with Sukerboschrand river before confluence with Bleebokspruit before confluence with Bleebokspruit Strong T.8 170 125 Trace 8 62 500 905 3.6 2 2 40 Trace 27 339 100 365 3.3 52 before confluence with Bleebokspruit Strong T.8 170 125 Trace 8 62 4 Trace 4.7 78 before confluence with Bleebokspruit Strong T.8 170 125 Trace 27 339 100 365 3.3 52 before confluence with Bleebokspruit Strong T.8 170 125 Trace 27 339 100 365 3.3 52 before confluence with Bleebokspruit Strong T.8 170 125 Trace 27 339 100 365 3.3 52 before confluence with Bleebokspruit Strong T.8 170 7.8 170 125 Trace 27 339 100 365 3.3 52 before confluence with Bleebokspruit Strong T.8 170 125 Trace 27 339 100 365 3.3 52	G 2c	Blesbokspruit at bridge on Nigel- Balfour North	Strong	7.6	2778	2366	Trace	16	978	540	945	3.6	60	
G 5a Slines dam seepage: Sub-Nigel ains, Betty shaft G 8d Vlakfontein stream entering dams north of Nigel G 8c Effluent from Nigel G 8c Effluent from Nigel Stoady G 9c Bleebokepruit below Nigel Swage Workn Rigel Swage Workn Stream at Nigel-Heidelberg road Gl5b Bleebokepruit above tannery in Heidelberg Gl7a Bleebokepruit before confluence with Bleebokepruit before confluence with Bleebokepruit Strong G 7.8 1750 1324 G 9c Strong G 17a Bleebokepruit before confluence with Bleebokepruit before confluence with Bleebokepruit before before confluence with Bleebokepruit Strong G 7.8 1750 1324 G 9c Strong G	G 4c	Vlakfontein stream at bridge on	Weak	5.0	2632	2270	-	25	862	500	905	3.6	2	
G 88 Violetontein stream entering dams north of Migel G 8c Effluent from Nigel Steady 4.3 2722 2694 Trace 75 895 400 1230 0.9 - Sampled: April to July, 1951 G 9c Elesbokspruit below Migel Strong 7.4 2564 2132 - 12 872 490 850 2.2 40 Migel Swage Works G10a West Spaarwater stream at Rigel- Heidelberg road G15b Blesbokspruit above tannery in Heidelberg Heidelberg G17a Blesbokspruit before confluence with Sukerboschrand river before confluence with Blesbokspruit G17b Sukkerboschrand river before confluence with Blesbokspruit G18a Sukerboschrand river before confluence with Blesbokspruit G18a Sukerboschrand river before confluence with Sukerboschrand river before confluence Strong 7.3 1000 747 Trace 27 339 100 365 3.3 52	G 5a	Slimes dam scepage: Sub-Nigel mine,	Weak	3.3	2667	2463	-	114	755	256	1375	22.4	-	
### Case String Stoady 4.3 2722 2694 Trace 75 895 400 1230 0.9	G 8đ	Vlakfontein stream entering dams	Steady	7.1	2174	1748	-	10	872	206	915	80.8	54	
G 9c Blesbokepruit below Strong 7.4 2564 2132 - 12 872 490 850 2.2 40	G 8c	Effluent from Nigel	Stoady	4.3	2722	2694	Trace	75	895	400	1230	0.9	-	
G 9c Blesbokepruit below Strong 7.4 2564 2132 - 12 872 490 850 2.2 40	_							1			<u> </u>			
Migel Swage Works Steady 7.5 233 171 10 14 85 38 17 6.3 80			-											
Steady S		Nigel Sewage Works		ļ					872	490				
Strong T.6 2128 1748 - 11 723 400 645 2.2 40		West Spaarwater stream at Nigel- Heidelberg road					10	14	85			6.3		
Collabolographic before confluence with Blesbokspruit Strong 7.8 1750 1324 Trace 23 597 292 545 3.3 40	G15b	Blesbokspruit above tannery in		7.6	2128	1748	-	11	723	400	645	2.2	40	
G17b Suikerboschrand river before confluence with Blesbokspruit G18a Suikerboschrand river before confluence before confluence before confluence before confluence before confluence before confluence	G17a	Blesbokspruit before confluence with Suikerboschrand	Strong	7.8	1750	1324	Trace	23	597	292	545	3.3	40	
G18a Suikerboschrand river Strong 7.3 1000 747 Trace 27 339 100 365 3.3 52	G17b	Suikerboschrand river before confluence	Strong	7.8	170	125	Trace	8	62	4	Trace	4.7	78	
	G18a	Suikerboschrand river before confluence	Strong	7.3	1000	747	Trace	27	339	100	365	3.3	52	


No.	Sample	Flow	při	Dionic cond. (micro- mhos)	Total dis- solved solids (ppm)	Sus- pended solids (ppm)	Mixed oxides (ppm)	Total hard- ness (ppm CaCO ₃)	Chlo- rides as Cl' (ppm)	Sul- phates as SOn (ppm)	4 Hr. 0/A (ppm)	Alka- linity (ppm CaCO ₃)	Remarks
Samo	l led: April to July, l	95 <u>1</u>											
AA 3a	Effluent from Klip Power Station	Steady	8.7	375	271	6168	3	154	22	119	74.2	100	
AA 4c	Klip river at bridge on Vereeniging- Vaal dam road	Strong	7.9	885	823	1	5	490	58	260	-	135	
AA 4a	Effluent from S.A. Farm Implement Hanufacturing Co.	Trickle	7.8	550	328	Trace	Nil	103	92	66	6.5	90	Floating oil
AA10b	Effluent from Stewarts and Lloyds factory	Steady	6.0	325	194	33	53	115	22	72	4,2	26	Floating oil
AA10a	Effluent from Union Steel Corporations northern factory	Steady	3,0	900	779	177	283	110	70	485	28.5	-	
IIAA	Houtkopapruit above factory effluents	İ			n	ot flow	l ing	}				<u> </u>	
AA13	Water from Vereeniging Power Station ash disposal plant	Wendo	13.2	8000	3478	183	14	2487	22	1435	42.5	1950	
AAl4	Effluent from Union Steel Corporation's southern factory	Steady	8.2	270	262	69	109	125	14	51	7.1	76	Floating oil

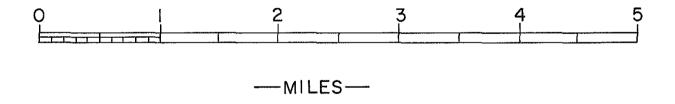
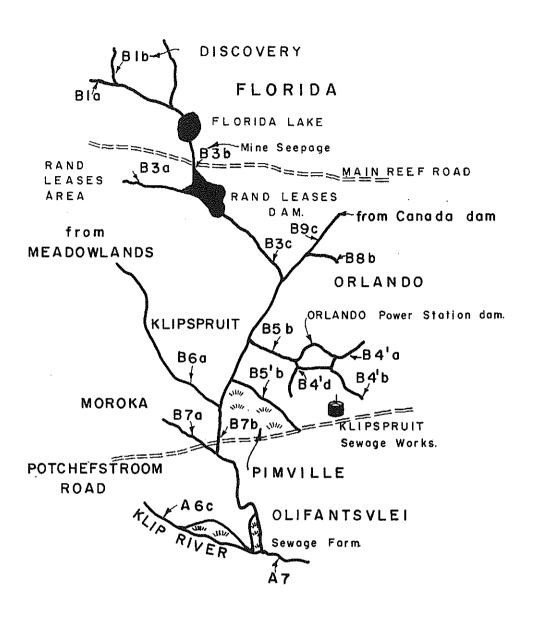

WITWATERSRAND STREAM SURVEY - KLIP RIVER SYSTEM

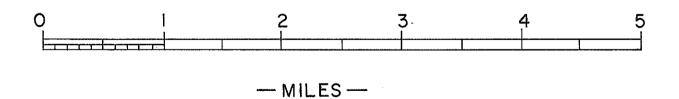
TABLE 4

Total dissolved solids concentration in ppm of unpolluted springs and surface water in the Witwatersrand area

	Period of		Range	
Source	sempling	Min.	Max.	Aver.
Yaal River, below Vaaldam, dischargo (surfaco water)	Jan. 1950 - Dec. 1953	70	110	95
Al' Klip River source at Lewisham (spring)	July 1953 - Jan. 1954	17	35	30
A4'a Stream entering upper Roodepoort dam from east (spring)	April 1953 - Jan. 1954	29	89	43
Bla Stream entering Hamburg dam from the weat (spring)	Sept. 1951 - Jan. 1954	17	76	44
Blb Eye at Discovery (spring)	Nov. 1950 - Jan. 1954	17	35	25
B6a Stream from Meadowlands (spring)	Feb. 1951 - Sept. 1953	81	176	115
B4'a Bailey's stream entering Orlando Power Station dam (spring)	May 1949 - May 1953	63	139	84
A4'b Stream into upper Reodepoort dam from the north (surface water)	Feb. 1951	One su taken		77
A4'd Stream into lower Reedepoort dam from the north (surface water)	Feb. 1951			65
Zuurbekom wall	1950 - 1953	Very	constan	146
A4'c Upper Roodepoort dam overflow (surface water)	Nov. 1950	95	137	109
A4'e Lower Roodepoort dam overflow (surface water)	Nov. 1950	53	142	102
C7 Klipriviersborg streem (spring)	Feb. 1951 - April 1953	46	145	90
C9a Cakdene stream (spring)	Feb. 1951 - Oct. 1953	66	185	123
G17b Suikerboschrond River above Blesbokspruit	April 1951 - Dec. 1953	60	144	113

A 12

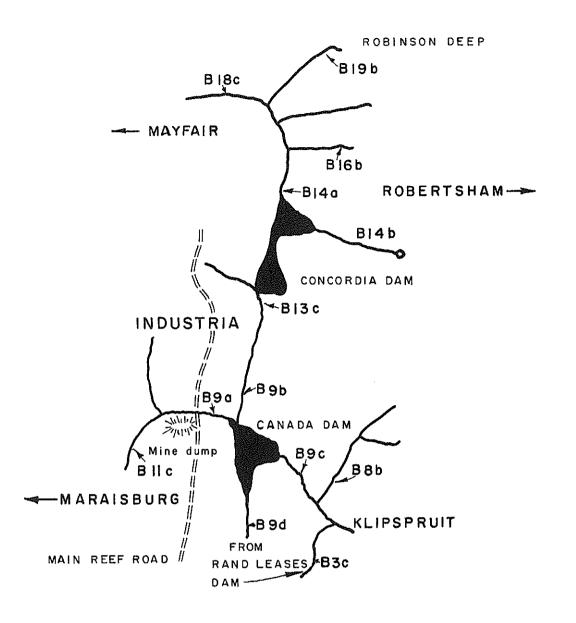

WITWATERSRAND STREAM SUNVEY - KLIP RIVER SYSTEM


TABLE 5

(Read in conjunction with diagram 1)

Chemical and minoral load data for Klip River at and above Jackson's/drift (Sections A and B)

Sampling and gauging point numbers	Year and Honth	Total dissolved solids in pps	Total hardness as CaCO in pps	Sulphates as SO ₄ in ppm	Observed mineral load lb/ 24 hours	Total excess mineral load in lb/24 hours	Accumulated mineral load in 1b/ 24 hours
	2000					10/24 1100018	
A 12	<u>1952</u> April	820	440	292	73000	64100	N12
	May June	865 835	495 400	337 321	86600 80100	76600 70500	Nil Nil
	July	950	580	420	97000	86800	nii
	Aug. Sept.	960 740	550 460	449 259	96000 55000	86000 47600	Hil Hil
	Oct.	660 1420	415 785	210 786	47600 2315000	40400 2151000	N11 2091000
	Dec.	870	505	449	788000	697500	638000
	1953 Jan.	940	495	477	491000	438700	372550
	Feb. Karch	740 840	413 463	222 420	67700 756000	58500 666000	N11 599700
	April .	930	493	461	486000	433800	367550
	Kay Juna	820 860	453 483	362 333	161000 84200	141400 74400	N11 N11
	July Aug.	900 810	463 488	350 377	84300 72000	74900 63100	N11 N11
	Sept.	690	480	185	58300	49800	Nil
	0ct. 1952	660	383	148	47600	40400	nti
A 10	April Sept.	1361 1269	522	160) 89)			
	1953		534)			
	Кау 1952	871.	342	128)		'	
A 9	April	1220 962	570 424	175)	250 674	recorded	
	Sept. 1953		424	91)	70 110M	recorded	
-	Hay 1952	887	349	137)	Ì		
8 &	April	1210	550 268	101 {			
	Sept. 1953	785	268	83).			
	Kay 1952	657	161	116)	ĺ		
A 7	April	1605	820	452	276500	259250	
	1953 May	1298	602	252	167500	154500	
	June June	1320 1390	690	780 680	32000	29500	
	July	1462	740 745	590	21350 19700	19400 18400	
ľ	Oct.	2203	995	83	-	, - ,	
}	<u>1954</u> Jan.	1383	725	785	238500	217700	
İ	Fob. 1953	992	422	530			
В 20ъ	June	1457	805	1100)	15a 60 au		
8 205	July 1952	1400	755	605)	No 170M	recorded	
1.6c	June 1953	1778	868	573)			
1	June	1010	540	418)			
	June July	929 1008	520 565	690) 470)			
	0ct. 1952	5181	714	343) }			
A 5c	Jan.	1937	824	- {			
ļ	<u>1953</u> June	1198	610	1080)			
4 5b	1953 Juno	1288	1090	62)			
- 1	1952)			
h 46	June Sept.	2664 2500	1450 1400	688) 754)			
i	1953 June	2140	1180	831)		[
	1952)) j	
A 4a	June 1953	_	32	54))			
	June	342	89	-)			
A4'f	<u>1952</u> May	562	36	262			
-	Sept. 1953	1718	146	752)		l l	
Ì	June	401	106	101)			
	Oct. 1952	472	47	77 }	:		
A410	May Sept.	91 142	44 45	27) 32)	No flow	recorded	
	1953			`)			
ļ	June 1953	53	16	13)		\ \	
44'Ь *	June 1952	108	54	36))			
A4°c	May	98	38	6 }			
	Sept. 1953	98	64	24)			
	June 1952	99	59	3)			
A 5a	Feb.	615	300	- {]		
	Peb.	707 1649	238 1008	617) 657)			
	1953)			
	June Oct.	941 16270	360 1256	700) 2379)			
A1* [1952 Feb.	7286	1,480	_			
	Hay 1953	16450	723	2720	155000	154000	
		1 0714	200	045	l .	i	
	Kay June	2314 2349	262	945 1570	8350	6000	



WITWATERSRAND STREAM SURVEY - KLIP RIVER SYSTEM

TABLE 6
(Read in conjunction with diagram 2)

Chemical and mineral load data for Klinspruit (Section B)

Sampling and gauging point numbers	Year and Month	Total dissolved solids	Total hardness in ppm as CaCO	Sulphates in ppz as SO ₄	Observed mineral load in lb/24 hours	Total excer mineral los in 1b/24 hours
	2052					
B 7b	1952 May	1778	868	572	76500	72000
	Sept. 1953	1470	650	461	43000	39000
	Kay	1324	790	620	185500	171000
	June July	1010 1514	540 845	418 570	185000 228500	167000 213400
	Oct.	1615	770	500	150000	142000
	1954 Jan	1597	860		352500	131500
97.	1952	202		,,,		
B7a	Hay Sept.	393 402	130 118	15) 28) 47 }		
	June 1952	429	220	47 }		,
Вба	Sept.	96	82	_)		
	1953 June	115	90	12)		
	Sept.	84	68	2)		
D 5'b	1952 April	1110	380	169		
	Sept.	978	376	78)		
	<u>1953</u> May	1093	427	155		
вбъ	1952 April	929	260	168)		
.,.	Sapt.	1194	374	75 }		
	1953 Hay	860	258	162)		
B 4'd	1952	707)	*	
2 4.0	April May	703 935	206 340	186) 175)	No flo	recorded
в 41ъ	1952 April	109	64	4 }		
	Sept.	174	112	1)		
	1953 May	296	103	10)		
	1952)		
B 4'a	April Sept.	89 63	46 32	9)		
ĺ	<u>1953</u>	- 1	- 1			
	May 1952	72	35	18)		
33c*	Jan Kay	- 2572	1260 1340	_) =7= \		
	Sept.	2395	1270	575 } 1015 }		
	<u>1953</u> June	2120	1100	715)		
	1952		ļ	.)		
3 3 a*	Feb. Kay	2087 2436	1304 1320	-) 415)		
	Sept. 1953	2195	1200	944		
	April	2508	1520	492	77500	74500
- 1	Jun≎ July	2380 2079	1300 1130	790 900	99100 67800	95000 64500
1	Aug.	1653	960	1020	51000	48000
336€	1952 Feb	722	496	_ }		
· ·	Feb. May	879 598	508 348	358) 78)		
	Sept.	1090	568	404 (
	1953 April	480	175	36)	No flow	recorded
Ì	June	1100	470	347		
	July 1953	1155	602	550 /		
	Aug. Oct.	328 2320	200 1170	145 1030		
	Dec.	2168	1240	1370		
	<u>1954</u> Jan	1113	650	720		
,,,	1952					
116	May Sept.	24 35	3 7	5 7		
	1953 June	24	8	4		
	July	17	12	-		
ļ	Aug. Dac.	28 23	8 6	6 7		
	<u> 1954</u>			·		
	Jan 1952	35	7	-		
31a	May	64 7x	24	5		
	Sept. 1953	73	34	13		
	June	76	30	11	l	

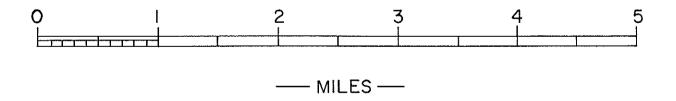


DIAGRAM 3

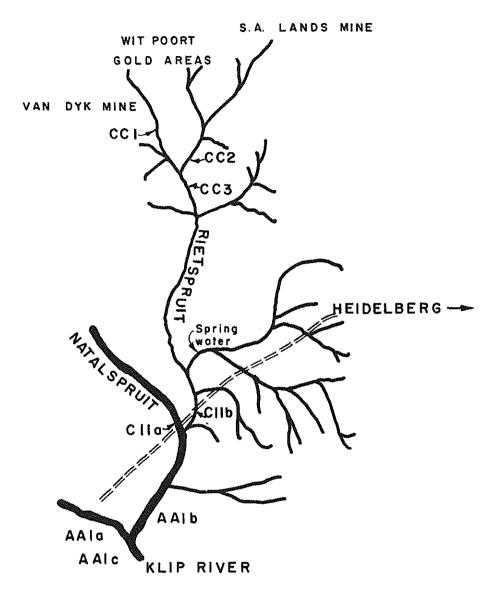

WITWATERSRAND STREAM SURVEY - KLIP RIVER SYSTEM

TABLE 7
(Read in conjunction with diagram 3)

Chemical and mineral load data for Klipspruit (Cont.) Section B

Sampling and gauging point numbers	Year and Month	Total dissolved solids in ppm	Total hardness in ppm as CaCO	Sulphates in ppm as 50 ₄	Observed mineral load in lb/24 hours	Total excess mineral load in 1b/24 hours
B8b*	1952 May Oct.	2930 3050	1690 1274	1140) 1075)	- No flow	recorded
	1953 June Oct 1952	2353 2628	1237 982	911 } 700 }		
B 9 c	Jan. Oct.	3091	1070 1463	1072	16620	16000
	1953 June Oct. 1952	2119 3878	1314 1700	985 587	91200 197000	87000 192000
В 9а	Jan Feb. Nay Oct.	2305 2385 2376	980 1210 1280 1154	-) 1083) 878) 895)	,	
	1953 June Oct. 1952	2752 2690	1382 900	957) 396)		
B 9 a *	Jan May Oct.	- 1642 2425	360 857 1065	- 561 787	No reliab	 le flow records
	June Qct.	1140 3130	599 1074	- 380 489)	45450	41450
В 11 с	1952 May Oct.	229 273	98 40	88) 78)		
	<u>1953</u> June 1952	159	83	51 }.		
ВЭъ	Jan. Feb. May Oct.	2007 3163 4488	770 870 1520 1433	1040) 1250) 1650)	No flow	recorded
	1953 June Oct.	3480 371.4	1604 1102	1385) 566)		
В 13 с	1952 May Oct.	3166 3340	1570 1234	1230 1422	26800	26000
	<u>1953</u> June 1952	3631	1652	1445	50200	59000
В 14 Ъ	May Oct. <u>1953</u>	395 369	120 119	69) 54)		
	June 1952	366	1.25	57)	-	
В 14 а	May Oct. 1953	3394 4126	1430 1483	1350) 1490)		
В 16 ъ	June 1952	3587	1622	1400)		
D 10 0	May Oct. 1953	2154 1665	978 701	790) 624))	No flow	recorded
B 19 b *	June <u>1952</u> May	1553 5338	682 2490	575) 3240)		-
	0et. 1953	5077	936	2240) 1870)		
	June Oct.	5315 12050	2136 2239	2240) 1670)		•
* Dire	ect inf]	l . Low from mine	s			

BRAKPAN

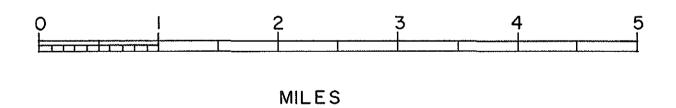
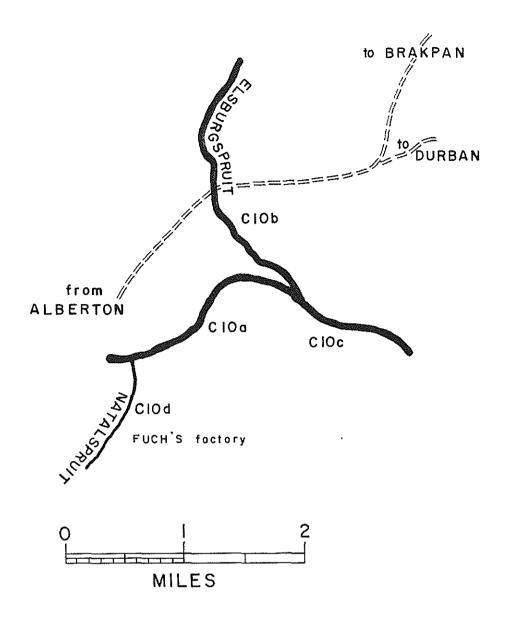



TABLE 8

(Read in conjunction with diagram 4)

Analytical and mineral load data for Rietspruit before confluence with the Natalspruit (Sections C and CC)

Sampling and gauging point numbers	Year and Month	Total dissolved solids in ppm	Total hardness in ppm as CaCO	Sulphates in ppm as SO"	Observed mineral load in lb/24 hours	Total excess mineral load in lb/24 hours	Accumulated mineral load in lb/ 24 hours
C 11 b	<u>1952</u> June July	321 289	258 283	49 25	1600 1200	1120 780	Nil Nil
	1953 Jan. Feb. April June	492 348 406 450	323 293 290	141 87 123	13000 130000 5700 5700	10490 93400 4500 4340	7200 189100 Nil Nil
	Aug. 0ct. 1952	360 333	350 300	72	7800 27100	5400 19000	Nil 15600
CC3	March April June July	630 1400 600 1500	480 770 360 912	435) 740) 123) 798)			
,	Sept. Oct. Dec. 1953	1000 300 1130	750 554	493) 205) 563)			
	Jan. Jan. Jan. March May	610 840 790 700 600	608 430 400 220 360	610) 840) 399) 450) 304)			
	June July Oct. Nov.	900 830 744 5700	570 230 490	300) 493) -) 316)			
CC2	1952 March April June	1950 2700 2400	1080 1060 1172	633) 1192) 1233)	No flow recorded		
;	July Sept. Oct. Dec.	2500 3500 1400	1260 1890 No flow 1200	1205) 1890) 814)			
	1953 Jan Jan Jan	540 1190 1440	700 580 695	292) 637) 769)			
	March May June July Oct.	1300 1600 1520 1400 4426	500 780 804 540 2250	459) 332) 710) 680)			
CC 1	Nov. 1952 March April	1400 1700	808 760	2754) 805 757	_ 3940	- 3708	<u>-</u>
	June July Sept. Oct. Dec.	1300 1600 4000 10000 1220	632 636 600 - 490	652 617 2400 5506 617	2310 11190 635 1076 8210	2132 10517 619 1065 7537	
	1953 Jan Jan Jan March	1050 500 1580 400	330 190 190 60	246 115 102 209	Over 11320 " 5390 "17000 2695	- - - 2122	-
	May June July	700 1000 640	- 560 450	243) 353) 370)	Gauge out	of order	_
	Oct. Nov.	2740 1600	1040	976	14150 1800	13633 6375	

WITWATERSRAND STREAM SURVEY - KLIP RIVER SYSTEM

TABLE 9 (Read in conjunction with diagram 5)

Analytical and mineral load data for the Natalspruit before confluence with Elsburgspruit (C 10 a) Section C

Year and month	Total dissolved solids in ppm	Total hardness in ppm as CaCO	Sulphates in ppm as SO"	Flow in cusecs	Observed mineral load in lb/24 hours	Total excess mineral load in 1b/ 24 hours	Accumulated mineral load in 1b/ 24 hours
1952							
April	2398	1370	1525	11	142000	136060	36000
May	2702	1380	1618	No	record		
June	3118	1530	1725	"	11		
July	3500	1740	1911	10	188000	183120	Nil
Aug	3717	1870	2096	10	200000	194120	Nil
Sept	4215	2040	2298	Nil	`-	-	-
Oct			· ·	o flow			
Nov	3897	1760	2261	150	3140000	3059100	2960000
Dec	2313	1210	1345	111	1380000	1320100	1221000
<u> 1953</u>		į					
Jan	1760	890	877	17	161000	152370	Nil
Feb	1439	880	887	57	442000	411300	123000
March	2098	1140	1177	7 8	1250000	1207900	920000
April	1709	1010	1012	39 .	358500	337410	49500
May	2518	1470	1439	41	566000	533900	246000
June	2810	1600	1570	25	378000	364500	Nil
July	3100	1710	1757	19	327000	316480	Nil
Aug	3490	1710	1868	17.5	329000	320090	Nil
Sept	3030	1700	2139	6	97800	94560	Nil
0ct	6020	1900	3666	100	3240000	3186200	2898000
Nov	4010	2250	2509	80	1730000	1686800	1399000
							<u></u>

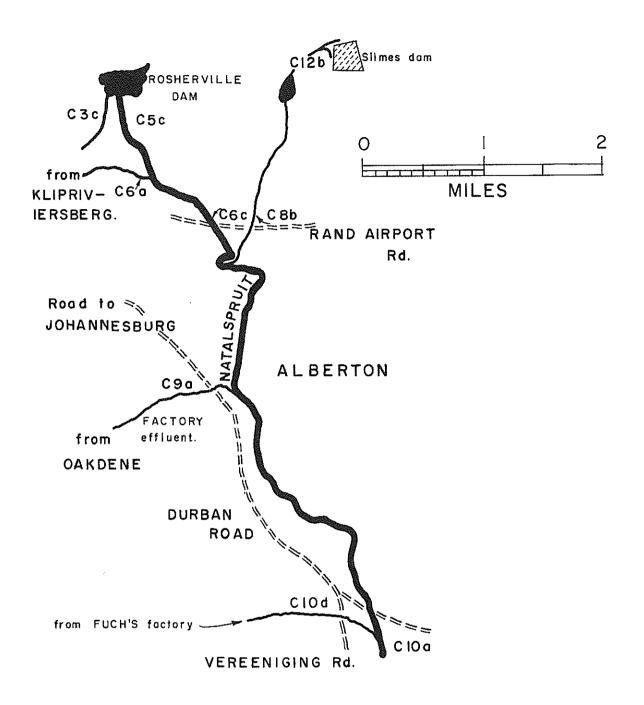


TABLE 10
(Read in conjunction with diagram 6)

Analytical data for the Natalspruit below Rosherville dam before confluence with Elsburgspruit, Section C

Sampling and Sauging point numbers	Year and month	Total dissolved solids in ppm	Total hardness in ppm as CaCO	Sulphates in ppm as SO ₄ "
C 10 à	<u>1952</u> June	362	83	74
G 10 G	July	406	100	163
	Oct	678	161	77
	<u>1953</u>	200	000	100
	Jan Feb	992 768	220 315	190 324
	June	616	160	188
	Aug	474	75	83
C 9 a	1952 March	66	_	12
- - -	May	100	40	16
	June	105	48	22
	Sept 1953	101	_	14
	Jan	158	72	23
	Feb	140	62 66	29
	April May	143 108	71	24 25
	Oct	185	120	
С8 Ъ	1952 March	3638	1675	2940
	April	3637	1330	2330
	May	4497	2000	2940
	June Aug	4548 4889	1925 1735	2920 2960
	Sept	4147	1990	2200
	1953 Ton	047.4	33.04	1600
	Jan Feb	2414 2476	1124 1150	1680 1410
	April	3002	1140	1700
	May	4016	1070	2080
	Aug Oct	3451 3070	1680 1340	2040
	Nov	3563	-	1910
C 12 b *	<u>1952</u> Jan	22089	3460	
0 12 0	April	17601	1625	3,0040
	May	16078	2220	10000
	June Aug	13588 13031	1750 1810	8200 7440
	Sept	13568	2130	7840
	<u>1953</u> .		<u> </u>	1
	Jan Feb	12120	2630 2075	8720
	April	3066 6930	2425	1940 4810
	May	8674	1375	5550
	Aug Oct	5271 4426	1920 1510	3240
	Oct	9617	940	-
	Nov	8553	2150	4650
C 6 c	<u>1952</u> Feb	2641	1500	1900
-	March	1922	1325	1290
	April	2133	1300 1400	1245
	May June	2070 3050	1800	1500 1830
	Aug	2888	1800	1760
	Sept 1953	3103	1872	1740
	<u>1955</u> Jan	1760	1254	1300
	Feb	1440	940	790
	April May	1783	1040	1210
	Aug	2494 3034	1030 1900	1510 1875
	0et	1895	1050	-
	Nov	3764	2085	2250
* Direct i	nflow from		1	1

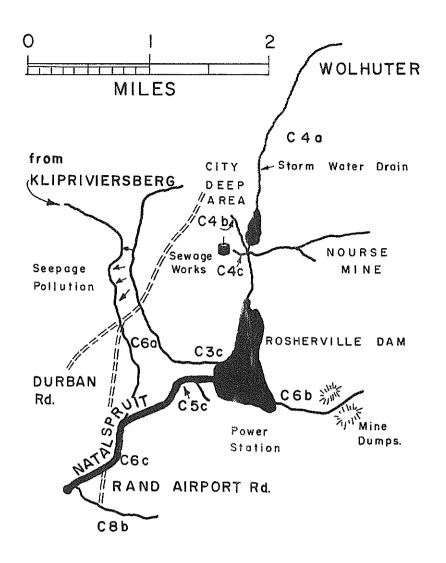


TABLE 11
(Read in conjunction with diagram 7)

Analytical and mineral load data for the Wolhuter and Northern streams entering Rocherville Ram and the Kilpriviersberg Stream entering Natalepruit, Section C

Sampling and gauging point numbers	Year and month	Total dissolved solids in ppm	Total hardness in pps as CaCO ₃	Sulphaten in ppm as "	Observed mineral load in Ib/24 hours	Total excess mineral loss in 1b/24 hours
			-			
	<u>1952</u>		400	CD0 3		
C6a	Hay June	939 932	490 430	580) 580)		
	Aug.	1079	503	604)		
	Sept.	1154	580	620)		
	1953	_,	,	3	ì	
	Jan	696	395	400)	No flow	recorded
	Feb.	842	400	485)	l .	ì
	April	1091	450	690)		
	May Aug.	838 844	450 440	535) 490)		
	Oct.	1329	600	-)		
	Nov.	344	183	156)		
	1952			_		1
C 5 o	March	2279	1485	1420	17200	16447
	May	2758	2090	2240	8910	8587
	June	3090	1910	1960	69800	67540
	Aug Sept	3174 3339	1912 2085	1590 1920	51250 25550	49635 24797
	1953	2223	2,005	1324	2,,,,0	47121
	Jan	1700	1030	1290	199300	187600
	Feb	1584	1020	1010	90500	84800
	April	1760	1110	1280	142000	133930
	Hay	2596	980	1455	147000	141350
	Aug	3382 2704	2170 1470	2150	25450	124697
	Oct	755	560	-	20350 5690	19597 4937
	Nov	3904	2128	2300	88200	85940
	1952]]	
C 5 b	Karch	2384	1450	1470)		
	April	2364	1410	1470)		
	May	2062	1500	1460)		
	June	2861	1750	1670) 770)		
	Aug 1953	1365	725	′′° {		
	Jan	798	395	545)	į	
	Peb	734	370	463 }		
	April	965	500	454 } 895 }		
	May	1452 N	710 o flow	895 }		
	Oct.	1967	855		No flow	recorded
	Nov.	2516	1150	1445)	"" ''" ,	
	1952)]	
x C4c	April	945	530	475))	
	Hay	910	540	=_ {		
	June	1066 1151	520 562	565) 500)		
	Sapt	1532	835	885)		
	1953			1 - 3		
	Jan	1038	450	473)		
	Peb	656	300	360)	l l	
	April	803	350	590 }		
	Kay 1952	1200	820	600 }		
*С4Ъ	April	5182	2810	3300)	[
	June	5268	2800	3440)		
	Aug	5491	2600	3740)		
	Sept	5148	2450	3540)	j l	ľ
	<u>1953</u>	5010	00-0	1 4700 }	1	
	Jan Feb	5918 5458	2830	4300) 2840)		
	April	5458 6055	2925 1575	4700		
	June	6426	2140	4350		
	Oct	4196	5050	- 5		
	1952	1)		
C4 A	March	1056	440	560	į l	
	April	157	80	59 }]	
	Hay June	1179 1364	470 500	585)		
İ	Aug	1143	468	405)		
	Sept	500	250	215		
	1953])		
	Jan	1804	498	1005)	}	
	Peb	692	265	410)	Į Į	
	April	2200	302	- }		
	Aug Aug	1200 973	560 480	690) 390)		
	Oct	704	250			
	0ct	295	98	- {	1	
	Nov	1759	395	951)		
, , l	مد _ر ن]]	
- Direc		v from mines i	i I	}]	
		ent	I	ŀ	1	

TABLE 12 (Read in conjunction with diagram 8)

Analytical and mineral load data for Southern stream entering Rosherville dam, Section C

Sampling and gauging	Year and	Total dissolved	Total hardness	Sulphates in ppm	Observed mineral	Total excess
point numbers	month	solids in ppm	in ppm as CaCO ₃	as ,, 50 ₄	load in 1b/24 hours	in 1b/24 hours
		,	, , ,	*		
0 3 с	<u>1952</u> April	5581	1020	3320	140000	137500
	May	5802	1550	3540	250000	24569
	June	3786	1520	2360	16300	15889
	Aug Sept	4514 3852	1850 1730	2220 2350	147200 69400	143940 67590
	1953	50,52	11,70	2,7,0	39400	0,750
	Jan	1568	606	1050	51100	47840
,	April June	1838 1918	685	1460	59900	56640
	0et	2984	680 1220	1200	21200	20090
	Nov	2249	1280	-	24500	23390
	<u>1952</u>					
†C 3 b	March April	3898 32 7 4	915 1360	2460) 2070)		
	May	3230	1690	1980		
	June	2557	1290	1400)		
	Aug .	2104	1050	1000) 1370)		
	Sept 1953	2188	1040	1370) \		
	Jan	2216	1240	1350)		
	Feb	2210	1070	1160)	i .	
	April June	2181	1200	1295)		
	Aug	2090 2153	1020 1040	1240) 1280)		
	0ct	2344	1080	- 5		
	Nov	2268	1190	- }		
* C2 c	1952 Jan.	3107	958	_ {		
	March	5474	1100	3460)	No flow	recorded
	April	1413	175	830)		1 .
	Kay June	12110 10234	2400 1220	8880) 5840)		
	Aug	6504	1980	3200		
	Sept	7706	1755	4880 }		
	<u>1953</u> Jan	1540	470	3000 }		•
	Pob	1540 1444	472 230	1220) 760)		
	April	2136	920	1480)		
	June	5206	500	2950)		
	Aug Oct	10569 7186	80 80	7000 }		
	Oct	7534	1570			
	<u> 1952</u>	1				ı
* C 2 b	Jan	1498	572	- }		
	March May	2401 1715	1 <i>477</i> 640	1450) 1190)		
	June	2046	640	1200)		
	Aug	2541	1470	1215)		
	Sept <u>1953</u>	2013	1057	1265)		
	Feb	1174	635	695		
	April	1659	1270	925)		
	May	2013 2184	730	1220)		
	Aug Oct	4588	1330 1250	1450))		
	<u> 1952</u>)		
Clc	March	681	402	435)		
	June 1953	930	427	522)		
	Jan	673	360	334)		
	Feb	604	278	328)		
	April May	618 790	272 287	362) 496)		
	Aug		flow	*** }		
	Oct	No :	flow		No flow r	ecorded
Cla	<u>1952</u> March	277	153	28)	1	
	May	220	97	18 ¹)		
	June	274	95	15)	1	
	Aug	297	194	16)		
	Sept 1953	174	90	14)		
:	Jan	364	198	95)	i	
	Feb	260	118	36)		
	April May	298 180	124 108	110) 38)		
	Oct	257	135		;	
* Ni===+ *-	r NEDani asi	· ·				
* Direct in	TTOM LLO	om mines			;	
	L					

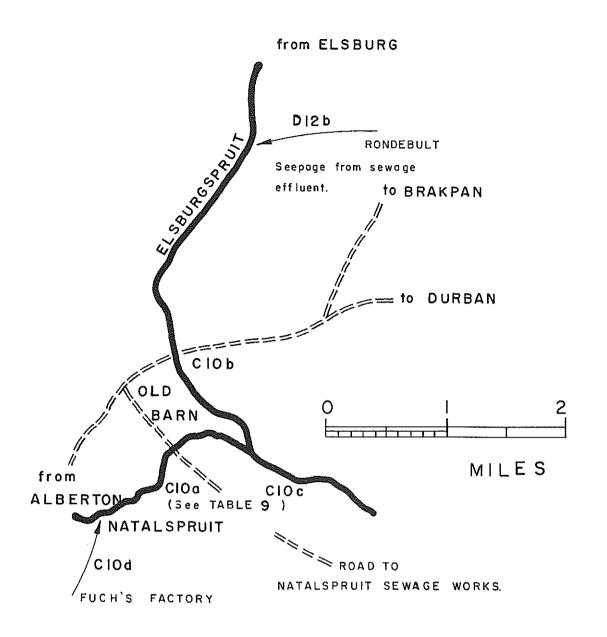


TABLE 13
(Read in conjunction with diagram 9)

Analytical and mineral load data for the Elsburgspruit before and after the Natalspruit confluence (Sections C and D)

Sampling and gauging	Year and	Total dissolved	Total hardness	Sulphates in ppm	Observed mineral load	Total excess
point	month	solids in	in ppm	as SO ₄	in 1b/24	in 1b/24
numbers		ppm	as CaCO ₃	4	hours	hours
	1952					
C 10 c	April	2263	1390	1338)		
	May	2258	1200	1302)	i	ł
	June	2470	1270	1295)		
	July Aug	2470 2377	1240 1360	1229) 1314)	}	
	Sept	1870	1070	995)		
	Oct	1746	1020	973)		
	Nov	1513	910	800)		
	Dec	1919	1010	862)		
	<u>1953</u>)	No flow :	recorded
	Jan	1590	870	1008)	ĺ	Į.
	Feb	1202	800	693)		
	March April	1786 1476	940 970	859) 797)		
	May	1678	1200	848)	Ì	
	June	1890	1930	972)		
	July	1810	1100	1048)		
	Aug	1830	930	773)		
	Sept	1609 , '	950	857)		
	Nov	1843	-	1100 (
	Nov 1952	1843	1210	1109)		
С 10 ъ	April	2756	1610	1552)		
•	May	3002	1540	1742)		
	June	2612	1270	1353))	
	July	2420	1210	1163)		
	Aug	2487	1230	1244)		
	Sept Oct	2424 2909	1320 1530	1207)	Gauge read	_
	Nov	2909 3380	1760	1502) 1858)	incorrec	·
	Dec	1707	800	634)		
	1953			- ´ ´		ļ
	Jan	1970	970	926)		
	Feb	1649	930	739)		
	March	1752	940	861)	407.000	700400
	April May	1376 1672	890 1210	667 838	421000 526000	390400 404600
	June	1820	1430	901	231500	494600 218800
	July	1620	1010	895	95800	89870
	Aug	1890	1200	722	169700	160700
	Sept	1710	1010	625	57100	53760
	Oct	2010	1100	1103		-
	Nov	1740	1200	1064	32700	30815
* D 12 b	<u>1952</u> April	1016	560	453)		
	May	867	470	292)	1	[
	June	905	420	290)		
	July	875	410	268)	1	
	Aug	1124	530	313)		
	Oct	1190	530	396)]]
	Nov Dec	909	440 500	283)	1	1
	1953	834	500	258) \	[
	Jan	915	550	247)		
	Feb	842	520	201)	No flow	recorded
	March	876	540	227)	1	1
	April	795	420	238)	1	
	May	926	750	346)		
	June July	970 870	- 540	282) 305)		
	Aug	1700	456	395) 415)	}	1
	Sept	1030	460	310)		1
	Oct	990	390	332)		
	Nov	1010	550	367)		
* Seerage] a-h.a-			Į .	
- peebage	Trom Kon	debult sewa I	ge works I			1
					<u> </u>	<u> </u>

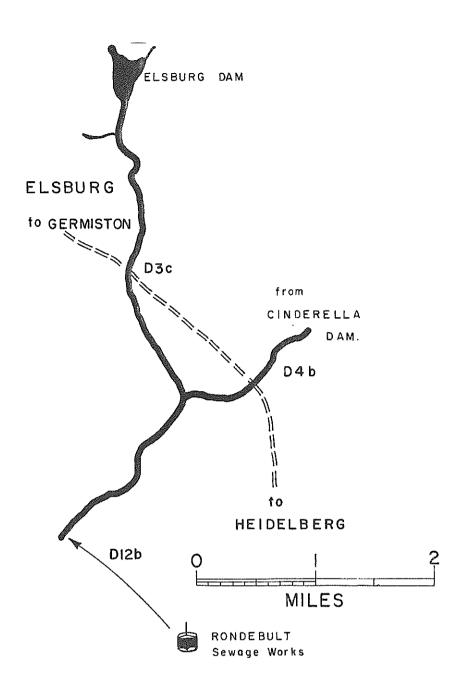


TABLE 14
^^^^^^^
(Read in conjunction with diagram 10)

Analytical and mineral load data for the Elsburgspruit at Elsburg Bridge (D 3 c) Section D

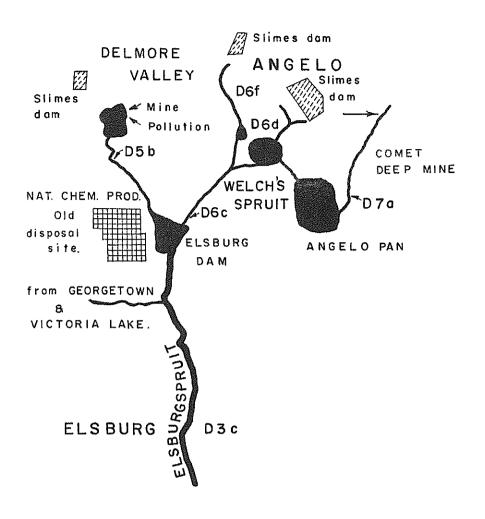

gauging Month s	dissolved solids in ppm	Total hardness in ppm as CaCO	Sulphates in ppm as " 504	Observed mineral load in lb/24 hours	Total excess mineral load in lb/24 hours	Accumulated mineral load lb/24 hours
D 3 c April May June July Aug. Oct. Nov. Dec. 1953 Jan Feb. March April May June July Aug. Sept. Oct. Nov.	3268 3816 3782 3437 3288 3188 2770 2303 2788 2882 4395 2195 2484 2296 2698 2320 3000 3080 1870 2910	1500 2090 1950 1910 1890 1800 1610 1160 1490 1290 1360 1180 1220 1450 1510 1330 1410 1290 1010 1700	1832 2101 2103 1966 2014 1915 1736 1294 1564 1530 1047 1152 1310 1286 1491 1224 1465 1265 1147 1713	176000 61600 - 18500 14150 Nil - 96300 148750 23650 63700 136650 49400 87700 102500 - 136000 516000 214000	170620 59985 17962 13719 Nil Nil 92850 143580 23112 60700 135650 47250 86870 98080 131580 488400 207200	148410 Nil Nil Nil Nil Nil Nil 70655 42010 Nil Nil Nil Nil Nil Nil Nil Nil Nil Nil

TABLE 15
(Read in conjunction with diagram 11)

Analytical data for stream from George Town and Victoria Lake, entering the Eleburgspruit after Eleburg dam (Section D)

Sampling and gauging point numbers	Yeur and month	Total dissolved solids in ppm	Total hardness in ppm as CaCO	Sulphates in ppm as SO ₄ "
DSP	1952 April May June July Aug Aug Oct Nov Dec	3558 3685 3681 4331 3771 3438 2688 2912 2469	2040 2170 1940 2320 2230 1900 1740 750 460	1948 2023 2027 2375 2324 1903 1798 615 439
D 1 c	Jan Feb March April May June July Aug Sept Oct Mov	1610 2115 1141 1156 959 3012 2870 2090 1940 1910 830 Noff	640 620 530 640 740 810 810 570 530 650 650	4546 303 223 364 278 300 423 217 207 425 193
	<u>1952</u>	110 1	+ 0 * I	
ріь	April May June July Aug Aug Oct Nov Dec	3524 3154 5768 6181 4524 4272 3274 2698 4631	1620 980 3120 2790 2100 2300 1750 1550 2400	2055 952 2952 3970 2686 2552 3345 1613 2644
	1953 Jan Feb March April May June July Aug Sept Oct Nov	6037 4386 3829 3240 3939 4049 4400 4540 4340 3000 3930	2220 2070 2030 1720 2280 2450 2410 2280 2030 1600 2340	2273 2222 2769 1810 2416 2468 1741 2489 2457 1656 2381
Dla	April May June July Aug Oct Nov	5823 5978 4409 1945 4627 5752 5353 6504 5851	2200 2450 2210 890 2700 3500 3180 2720 2600	3472 3659 2434 904 2650 2415 23322 3803 3552
	1953 Jan Feb March April May June July Aug Sept Oct Nov	6012 7808 7130 5604 6056 5370 5930 6780 6300 4520 4420	2430 2710 2870 2540 2800 2420 2700 2500 2420 2030 1700	3545 4085 2802 3040 3701 3343 3156 3757 3797 3263 2625

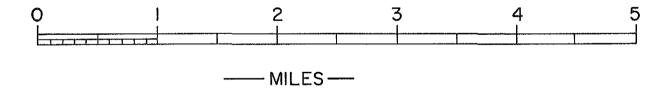


TABLE 16 (Read in conjunction with diagram 12)

Analytical and mineral load data for the streams entering Elsburg dam (Section D)

and gamping point combers of the point combers of t	Sampling	Year	Total	Total	Sulphates	Observed	Total excess
D D D D D D D D D D	and gauging point	and month	dissolved solids in	hardness in ppm	in ppm as SO,"	mineral load in lb/24	mineral load in 1b/24
D 5 b	numbers		ppm	as CaCO	4	hours	hours
Hay							ĺ
June 4406 2270 2266 3 374 2010 -0 3 4 4 4 5 5 5 4 4 5 5	руб						
Aug 3091 1910 1940 1954 1950 1954 1950 1954 1950 1954 1950 1		June	4406	2270	2460)		
Sept. 2718 1550 1594		- 1					}
Nov		Sept	2718	1550	1584)		
Dec 2500 1450 1449 No flow recorded							
Peb 3007 1540 1571 Narch 552 1990 2724 April 3700 1720 2039 Narch 1562 1990 2724 Narch 1562 1990 1720 2039 Narch 1560 660 759 Nov 2040 1400 1617 1850 1500		Dec				No flow	recorded
March 5632 1990 2794 April April 3700 1720 2039 May 2712 1330 1411 June 3390 2120 1937 July 3696 1880 1695 1690 1000			3007	1540	1571)	,	1
May 2712 1330 1411 1 1 1 1 1 1 1 1							
June 3390 2120 1937							
Aug 2510 1520 1590 1590 1617 1595 1690 1617 1595 1690 1617 1							
Dec 1360 680 759			1		/		
D 6 c 1952 2440 2878 113000 110850 59755 2080 2189 57100 59755 59750 59755 2070 110850 59755 59750 59750 5							
D 6 c April S251 2440 2878 113000 116850 57755 57750 57755 57750 57755 57750 57755 57750 57755			2040	1400			
Eay 4245 2080 2189 571.00 55755 July 4195 2070 2621 67800 66095 July 4195 1960 2022 36650 35775 Sept 5582 18000 2232 43400 42180 Oct 3524 1680 2031 56900 55285 Rov 3766 1760 2377 50600 43255 Bec 5342 2250 2717 176700 143390 1953 Feb 4182 1780 2495 169000 164960 March 4962 1720 2964 -	D 6 c		5251	2440	2878	113000	110850
July 4195 1960		May	4245	2080	2189	57100	55755
Aug 3425 1650 2022 36650 35775 Sept 5582 1680 2031 5690 55285 Riov 3766 1760 2377 50600 49255 Dec 5542 2250 2717 176700 145330 Lig53 Peb 4182 1780 2495 169000 164960 March 4962 1720 2964 - April 4944 1970 2711 276000 23462 June 5319 2310 3055 - June 5319 1800 1764 - Oct 6150 2290 1800 1883 - June 5470 2490 2892 50900 49825 Dec 1952 Day 1880 1764 - Aug 5470 2880 1764 - Aug 5470 2890 3324 4.5) June 5490 2700 2892 50900 49825 Dec 3960 2700 2582 4.0) July 5027 2340 - 4.4) Aug 6370 2890 3560 3.7) Rov 4481 870 3032 3.2) Boc 3960 2250 2223 5.0) Dec 3960 2250 2223 5.0) April 3322 1170 1869 3.4) April 3322 1170 1869 3.4) April 3322 1170 1869 3.4) Aug 6677 1710 1927 5.7) Aug 5667 1710 1927 5.7) Sept 0ct 3800 1860 2167 4.2) June 4215 1320 2440 4.5) July 5524 1530 1908 6.6) No 4781 770 2964 4.1) Dec 5117 1790 1290 4.0) Lig53 1400 1572 8.2) Lig54 168 1550 2452 4.6) Aug 3560 1780 1929 5.5) Light 1400 1760 2259 5.1) Aug 3505 1590 1729 5.5) Lig55 1400 1800 1800 1800 1939 8.1) Light 1400 1620 2029 4.7) Light 1400 1620 2029 4.7) Light 1400 1620 2029 4.7) Light 1400 1620 2029 4.7) Light 1400 1620 2029 4.7) Light 1400 1620 2029 4.7) Light 1400 1620 2029 4.7) Light 1400 1620 2029 4.7) Light 1400 1620 2029 4.7) Light 1400 1620 2029 4.7) Light 1400 1620 2029 4.7) Light 1400 1620 2029 4.7) Light 1400 1							
Oct 3524 1680 2081 59900 55285							
Nov							
1953 Feb		1					
Feb		1	5342	2250	2717	176700	143390
March 4962 1720 2964 2760000 268330 2711 2760000 268330 23462 2711 2760000 268330 23462 24000 23462 24000 23462 24000 23462 24000 23462 24000 23462 24000 23462 24000 23462 24000 23462 24000 2582 24000 23462 24000 2582 250000 2582 250000 2582 250000 24000 2682 250000 24000 2682 250000 24000 2682 250000 24000 2682 250000 24000 2682 260000 2682 260000 2682 260000 2682 260000 2682 260000 2682 260000 2682 260000 2682 260000 2682 260000 2682 260000 2682 260000 2682 260000 2682 260000 260000 2600000 260000000000			4182	1780	2495	169000	164960
May		March	4962	1720	2964	-	-
June 519 2310 3055			4			1	
Aug		June	5319	2310	3055	_	-
Det 6130 2290 3126 520000 511500 Nov 4730 2400 2882 50900 49825 Det April Dry May 6196 2820 3384 4.5 3710 July 5027 2340 -						_	_
D 6 f April Dry June 6490 2700 2582 4.0 July 5027 2340 - Aug 6370 2890 3600 3.7 Nov 4481 870 2253 5.0 Dec 3960 2250 2223 5.0 Nor 1953 Peb 4446 1780 2673 3.4 Narch Dry April 3322 1170 1869 3.4 Narch Dry July " " Aug " " Sept " " " Oct 3800 1860 2187 4.2 * D 6 d April 3942 1740 2308 5.3 July 3584 1410 - Aug 3667 1710 1927 5.7 Sept 3168 1500 1572 8.2 Oct 3254 1550 1908 6.6 Nor 1255 No flow recorded Nov 4781 770 2964 4.1 Dec. 5117 1790 1290 4.0 No flow recorded Narch 3940 1760 2259 5.1 No flow recorded * D 6 d April 3952 1740 2508 5.3 May 4162 1300 2106 4.5 July 3584 1410 - 5.0 Aug 3667 1710 1927 5.7 Sept 3168 1500 1572 8.2 Oct 3254 1550 1908 6.6 No flow recorded Nov 4781 770 2964 4.1 Dec. 5117 1790 1290 4.0 No flow recorded Nov 4781 1760 2259 5.1 April 4080 1620 2029 4.7 May 3303 1590 1729 5.5 June 2593 1820 2045 5.2 July 2931 1410 1510 5.9 Aug 3560 1780 1939 8.1 Oct 4600 1850 2293 4.2 Nov 4070 2000 2419 5.7		0ct	6130	2290	31.26		
D 6 f April Dry May 6196 2820 3384 4.5		l	4730	2400	2882		49825
May 6196 2820 3384 4.5 3 4.0 3 3 4 4.5 3 4.0 3 3 4 4.5 3 4.0 3 3 4 4.5 3 4.0 3 3 4 4.5 3 4.0 3 4.0 3 4.0 3 4.0 3 4.0 3 4.0 3 4.0 3 4.0 3 4.0 3 4.0 3 4.0 3 4.0 3 4.0 3 4.0 3 4.0 3 4.0 3 4.0 3 4 3 4.0 3	D6f		Dry			pH	
## D 6 d		May	6196		1 1		
Aug					1 1		*
Nov		Aug	6370		3600		
Dec 3960 2250 2223 5.0 No flow recorded		,		870	3032	3.2)	
Feb March Dry April 3322 1170 1869 3.4) May 4557 2220 2869 -) June No flow July " " No gept " " No gept " " No gept " " No gept " " No gept " " No gept " " No gept No gep		Dec	ì			5.0	
March April 3322 1170 1869 3.4) Nay 4557 2220 2869 -) June No flow July " " Sept " " " Sept 162 1300 2106 4.5) June 4213 1320 2440 4.5) June 4213 1320 2440 4.5) July 3584 1410 - 5.0) Sept 3168 1500 1572 8.2) Oct 3254 1530 1908 6.6) No flow recorded Nov 4781 770 2964 4.1) Dec. 5117 1790 1290 4.0) March April 4080 1620 2029 4.7) May 3303 1590 1729 5.5) June 2593 1820 2045 5.2) June 2593 1820 2045 5.2) July 2331 1410 1510 5.9) Aug 3560 1780 2000 2419 5.7)			4446	1780	2673		o flow recorded
Nay		ı	1 1			, ,	
June July " " " " " " " " " " " " " " " " " " "						3•4) _)	
Aug Sept 0ct 3800 1860 2187 4.2 1952 1740 2308 5.3 1850			No fl	OW	2000	- }	
Sept Oct 3800 1860 2187 4.2 1952 4.6 1500 1572 8.2 1570 1290 4.0 1952 1740 1957 5.7 1750 1290 4.0 1957 1750 1290 4.0 1957 1750 1290 4.0 1957 1750 1			1			}	
* D 6 d 1952 April 3942 1740 2308 5.3 April 4162 1300 2106 4.5 April 3784 1410 - 5.0 Aug 3667 1710 1927 5.7 Sept 3168 1500 1572 8.2 April 1530 1908 6.6 No flow recorded Nov 4781 770 2964 4.1 April 4080 1620 2029 4.7 April 4080 1620 2029 4.7 Aug 3303 1590 1729 5.5 June 2593 1620 2045 5.2 July 2931 1410 1510 5.9 Aug 3560 1780 1939 8.1 Oct 4600 1850 2293 4.2 Nov 4070 2000 2419 5.7			ſ		! 	ý	
* D 6 d			3800	1860	2187	4.2)	
May 4162 1300 2106 4.5) June 4213 1320 2440 4.5) July 3584 1410 - 5.0) Aug 3667 1710 1927 5.7) Sept 3168 1500 1572 8.2) Oct 3254 1530 1908 6.6) No flow recorded Nov 4781 770 2964 4.1) Dec. 5117 1790 1290 4.0) 1953 Feb 4168 1550 2452 4.6) March 3940 1760 2259 5.1) April 4080 1620 2029 4.7) May 3303 1590 1729 5.5) June 2593 1820 2045 5.2) July 2931 1410 1510 5.9) Aug 3560 1780 1939 8.1) Oct 4600 1850 2293 4.2) Nov 4070 2000 2419 5.7)	* D 6 d		3942	1740	2308	5.3)	
July 3584 1410 - 5.0) Aug 3667 1710 1927 8.2) Sept 3168 1500 1572 8.2) Oct 3254 1530 1908 6.6) No flow recorded Nov 4781 770 2964 4.1) Dec. 5117 1790 1290 4.0) 1953 Feb 4168 1550 2452 4.6) March 3940 1760 2259 5.1) April 4080 1620 2029 4.7) May 3303 1590 1729 5.5) June 2593 1620 2045 5.2) July 2931 1410 1510 5.9) Aug 3560 1780 1939 8.1) Oct 4600 1850 2293 4.2) Nov 4070 2000 2419 5.7)		May	4162	1300		4.5)	
Aug 3667 1710 1927 5.7) Sept 3168 1500 1572 8.2) Oct 3254 1530 1908 6.6) No flow recorded 1908 4.1) Dec. 5117 1790 1290 4.0) 1952 7eb 4168 1550 2452 4.6) March 3940 1760 2259 5.1) April 4080 1620 2029 4.7) May 3303 1590 1729 5.5) June 2593 1820 2045 5.2) July 2931 1410 1510 5.9) Aug 3560 1780 1939 8.1) Oct 4600 1850 2293 4.2) Nov 4070 2000 2419 5.7)					2440		
Oct 3254 1530 1908 6.6 No flow recorded Nov 4781 770 2964 4.1 1995 1290 4.0 1295 1290 129		Aug	3667	1710		5.7]]
Nov 4781 770 2964 4.1) Dec. 5117 1790 1290 4.0) 1953 Peb 4168 1550 2452 4.6) March 3940 1760 2259 5.1) April 4080 1620 2029 4.7) May 3303 1590 1729 5.5) June 2593 1820 2045 5.2) July 2931 1410 1510 5.9) Aug 3560 1780 1939 8.1) Oct 4600 1250 2293 4.2) Nov 4070 2000 2419 5.7) D 7 a See Table 17			_				o flow recorded
1953 4168 1550 2452 4.6		Nov	4781	770	2964	4,1 }]
Feb			5117	1790 	1290	4.0 }	
April 4080 1620 2029 4.7) May 3303 1590 1729 5.5) June 2593 1820 2045 5.2) July 2931 1410 1510 5.9) Aug 3560 1780 1939 8.1) Oct 4600 1250 2293 4.2) Nov 4070 2000 2419 5.7) D 7 a See Table 17							
May 3303 1590 1729 5.5) June 2593 1820 2045 5.2) July 2931 1410 1510 5.9) Aug 3560 1780 1939 8.1) Oct 4600 1850 2293 4.2) Nov 4070 2000 2419 5.7) D 7 a See Table 17		1					
June 2593 1820 2045 5.2) July 2931 1410 1510 5.9) Aug 3560 1780 1939 8.1) Oct 4600 1850 2293 4.2) Nov 4070 2000 2419 5.7) D 7 a See Table 17		ŧ -		1590	1729	5.5 }	
Aug 3560 1780 1939 8.1) Oct 4600 1850 2295 4.2) Nov 4070 2000 2419 5.7) D 7 a See Table 17		1	2593	1820		5.2	
D 7 a See Table 17							
D 7 a See Table 17		Oct	4600	1850	2293	4.2)	
		Nov	4070	2000	2419	5•7 J	
· I I I	D 7 a	ι					
	* Direct in		•			· 	
		<u></u>					

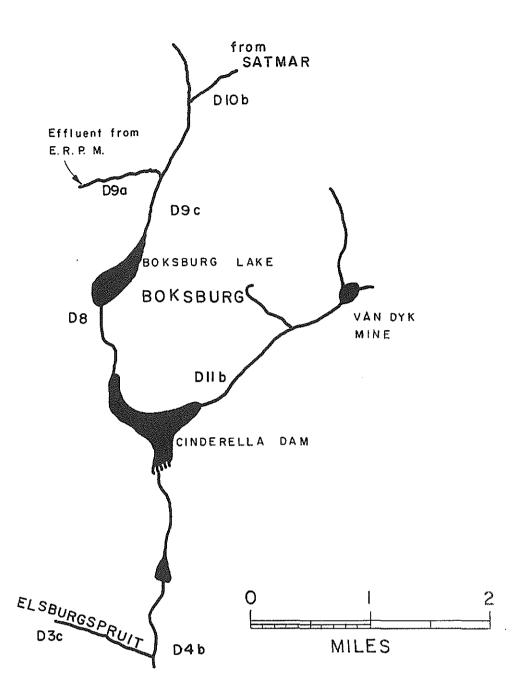


TABLE 17
(Read in conjunction with diagram 13)

Analytical data for streams from Boxaburg North entering Cinderella dam and S.R.P.M. etroms entering Angelo Fan (Section D)

Sampling and gauging point mumbers	Year and month	Total dissolved solids in ppm	Total hardness in ppm as CaCO ₃	Sulphates in ppm as 30 ₄ "	Observed mineral load in 1b/ 24 hours
D 11 b	<u>1952</u> April	667	560	297)	
211	Hay June	2235 1139	1010 290	1074)	
	July Aug	1014 3023	430 1360	261) - } 1681)	
	Sopt Oct	1700 1559	910 420	999)	
	Nov Dec	363 1485	220	184) 852)	No flow recorded
	1953		530	!)	Ne 1708 Lacatone
	Feb Earch	630 583	410 440	233) 198)	
	April Ney	826 1182	730 540	291) 650)	
	June July	1559 1439	950 860	1040) 655 }	
	Aug Oct	2900 780	1070 580	1657) 290) 455)	
	50v 1952	540	300		
De	April Kay	511 Ngo	180 flow	286)	
	June July	853	450	_ }	
	Aug Sept	897 897	470 500	485) 600)	
į	Oct Nov	932 796	420 420	570) 440)	
	Dec 1953	723	360	381.)	No flow recorded
	Peb Rarch	595 661	400 430	306 } 299 }	
	April	561 554	570	262)	
Ì	May Juna	631 720	350 990	406)	
	July	741 15 o	flow)	
	Oat Nov	860	500	606)	
D 9 c	<u>1952</u> April	867	560	297	
	‼ay June	2235 1139	1010 290	1074) 261)	
	July Aug.	1014 3023	430 1360	-) 1681)	
	Sept Oct	1700 1559	910 420	999 }	
,	Nov Doc	533 1485	220 530	164) 852)]
	1953 Pob	630	410	233	
	Marah April	583 826	440	198)	
	Kay	1182	730 540	650)	ļ
	June	1559 1439	950 680	1040) 655)	
	Aug Oct	2900 780	1020 580	29)	
	Nov 1952	540	300	495)	
* D 9 a	April May	n n	flow	} }	1
	June July	2270 No	510 flow	1273)	
	Aug Sopt	n	# "	}	
	Oct Nov	660	" 220	421 }	
	Dec	6577	980	2823)	
	1953 Feb	2531	740	1510	No flow recorded
	March April	5866 5866	flew 1170	3094	
	May	4357 7832	2380	1918) 4619)	1
	July Aug	1043 No	1130 flow	471 }	
	Oct Nov	1260 880	600 310	724) 626)	
D 10 b	1952 April	1514	480	347	
	Ray June	995 890	430 210	150 156	
	July Aug	1021 11650	40 1660	554	C1 : 5100
	Sapt Oct	625 806	90 300	93	,
	Nav	546 712	220 300	144 228	
	1953 Peb	462	420	196	
	Karch April	560 696	450 620	227 222	
	May June	683 410	290 760	107 832	
	July Aug	599 770	700 510	158 130)
	Oct Nov	600 710	520 330	221 435	,,
	1952	6940 7312		4007	R ₂ O ₃
* D 7 a	Ap-11	7312	2020 2250 1680	5551 5003	350 683 2120
* D 7 a	April May June	6894		1 ~~	3441
* D 7 a	April Hay June July	6894 5836	1900 2130	3777	1169
* D 7 a	April May June July Aug Sapt	6894 6836 6581 4376	2130 1920	3777 2605 2603	1169
* D 7 a	April Hay June July Aug Sapt Oct	6894 6836 6581 4376 4450 9688	2130 1920 1850 1180	2605 2603 5959	2993
* D 7 a	April Kay June July Aug Sapt Oct Fov Dec	6894 5836 6581 4376 4450 9688 15937	2130 1920 1850 1160 1600	2605 2603 5999 2870	2993 4410
* D 7 a	April Hay June July Aug Sopt Oct For Dec 1953 Peb Harch	5894 5836 6581 4376 4450 9688 15937 4519 5493	2130 1920 1850 1160 1600	2605 2603 5959 2870 2610 3203	2993 4410 1144 939
* D 7 a	April Hay June July Aug Sept Oct Sov Dec 1953 Feb March April Kay	6894 8836 6581 4376 4450 9686 15937 4519 5493 6847 9235	2130 1920 1850 1160 1600	2605 2603 5959 2870 2610 3203 3450 1318	2993 4410
÷ D 7 a	April Hay June July Aug Sapt Oct For Dec 1953 Feb March April March June July	6894 8836 6581 4376 4450 9688 15937 4519 5493 6847 9235 6656 10250	2130 1920 1850 1160 1600 1110 1350 1820 2400 1910	2605 2603 5959 2870 2610 3203 3450 1318 3803	2993 4410 1144 939 1420 2335 1654
÷ D 7 a	April Hay June Aug Sapt Oct Sov Dec 1955 Feb March April May June	6894 8836 6581 4376 4450 9686 15937 4519 5493 6847 9235	2130 1920 1850 1160 1600 1110 1350 1820 2400	2605 2603 5959 2870 2610 3203 3450 1318	2993 4410 1144 939 1420 2335

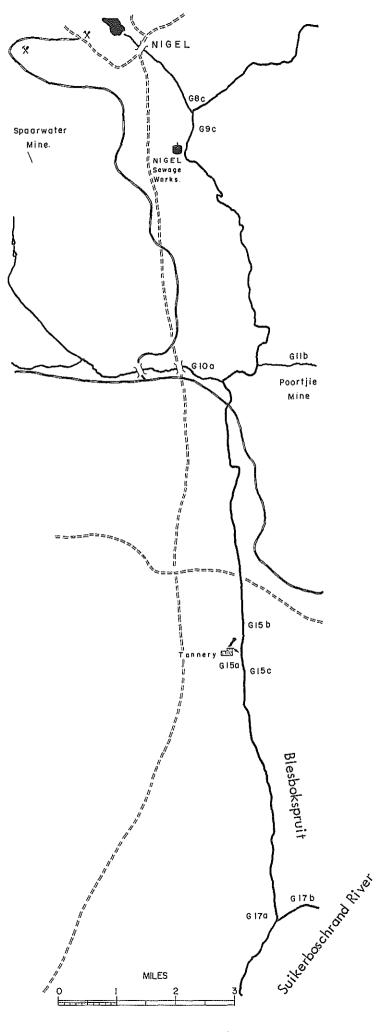


TABLE 18
(Read in conjunction with diagram 14)

Analytical and mineral load data for Blesbokspruit in Heidelberg - Nigel area (Section G)

Sampling and gaug- ing point number	Year and month	Total dissolved solids in ppm	Total hardness in ppm as CaCO ₃	Sulphates in ppm as SO ₄ =	Observed mineral load in 1b/24 hours	Total excess mineral load in 1b/24 hours	Accumulated mineral load in 1b/24 hours
G 17b	See	Figure 9					
G 15c	<u>1952</u>	2275	3.050	850)			
G 196	June July	2275 2216	. 1050 1020	860) 870)			
	0ct	1997	-	- j			
	<u>1953</u>)	Flow not re	corded	
	Jan Feb	1608 1724	915 890	780) 695)	}	1	
	April	1220	620	695)			
	June	968	515	410)			
	Aug	1123	530	480)			
	0ct	890	390	-	O.A. 4 hours	ļ	
G 15a	<u>1952</u> May	4188	1670	1320	<u>in орт</u> 231		
/-	June	6955	1280	1700	852		
	July	4878	940	970	204		
	Oct	5678	1010	650	400		
	<u>1953</u> Jan	5254	1340	1090	408	\ \	
	Feb	2526	665	495	224		
	April	4880	660	615	58		
	June	4270	860	715	66		
G 15b	Aug See	3444 Figure 10	665	800	150		
دري ه	<u>1952</u>	116010 10					
G 11b *	May	178	190	42)			
	June	197	98	73)			
	July Oct	155 308	98 -	41)			
	1953)00	_	- {		1	
	Jan	550	126	42)			
	Feb	176	117	46)			
	April June	186 198	111 139	55) 59)			
	Aug	161	115	51)			
	Oct	241	125	-)		Ì	
"	<u>1952</u>		_	_ }	Flow not re	corded	
G 10a *	May	129	28 64	3 }		ļ	
	Aug Nov	154 149	46	17)			
	<u>1953</u>	,		\			
	Jan	138	44	15)			
	Feb	130	49	15)			
	March April	124 156	71 68	14) 19)			
	May	199	87	26)	}		
	June	184	80	20))		
	July	196	-	- }			
	Sept Nov	100 86	51	- {			
	1104	- CO	_	- '			
* Minin	g pollu	tion not ev	idenced ye	t in these	natural streams		l

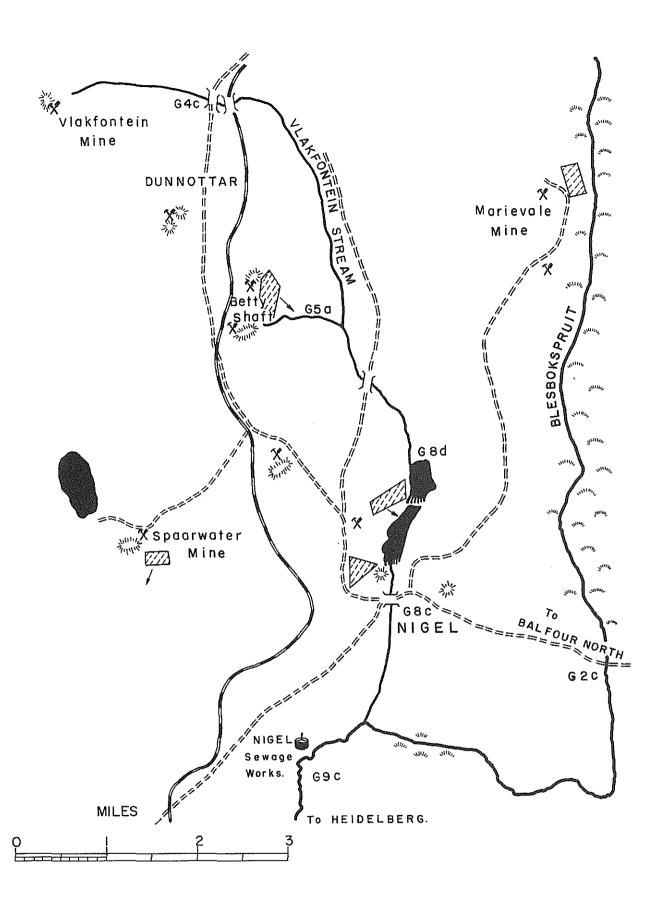


DIAGRAM 15

TABLE 19
(Read in conjunction with diagram 15)

Analytical and mineral load data for Vlakfontein stream at Nigel (Section G)

Sampling	Year	Total	Total	Sulphates	Observed	Total excess	Accumulated
and gauging	and	dissolved	hardness	in ppm	mineral load in	mineral load	mineral load
point	month	solids in	in ppm	as 50 ₄ =	1b/24 hours	in 1b/24 hours	
number		ppm	as CaCO				hours
	1050						
G 8c *	<u>1952</u> May	1757	682	320		_	
3 00	Aug	2832	800	1224	\ <u> </u>		
	Sept	Dry	Dry	Dry	Dry	Dry	Dry
	Oct	Dry	Dry	Dry	Dry	Dry	Dry
	Nov	3323	1084	1496	Dry	Dry	Dry
	1953					•	_
	Jan	3146	996	1384	(-	-	
	Feb	3408	1114	1516	13920	13511	10788
	March	3613	953	1542	86500	84132	81945
	April	2924	846	1280	90500	87406	84680
	May June	2615 2808	850 826	1328	2815	2707	Nil
	July	3064	- 020	1350	635 3790	612 3666	Nil Nil
	Sept	2876	1088	_	124	120	Nil
	Oct	2590	_	_	> 1395000	> 1341200	> 1338380
	Nov	2106	_	_	533	508	Nil
	1952						
G 8d *	May	1928	686	362)			
	Aug	21.21	636	710)			
	Nov	1588	624	684)			
	1953			}			
	Jan	1674	708	725)			
	March	1885	741	824)			
	April May	1894 1923	754 808	810) 866)]
	June	1902	796	850			
	Sept	1912	774	_ 5,0 }			•
	Nov	2336	1 (T	- 5			
	1952	-33-		ĺ			
3 5a *	May	3496	1406	658)			
	Aug	36 7 8	1992	1946)			
	Nov	3856	1589	1951)			
	1953		+)			
	Jan	3652	1506	1846)			
	Feb	3848	1542	1927)			
	Harch	3979 3760	1556	1772			
	April	3760 3501	1485	1777)	777	٠	•
	May June	3521 3681	1392 1497	1751) 1714)	Flow not	recorded	
	July	3792	1491]		
	Sept	3893	1532	_ {			
	Nov	5402		_			
	1952			l Ś			
G 4c *	May	2607	639	408)			
	Aug	2151	610	690)			
	Sept	No flow	No flow	No flow			
	Oct Nov	No flow 2415	No flow 848	No flow} 927)			
	1953	とーエン	040)			
	Jan	2384	794	884 {			
	Feb	2216 2058	820 74 1	895) 796)			
	March April	2308	741 785	864			
	Мау	2312	816	927			!
	June	2408	800	846 }			
	July Sept	2326 No flow	No flow	No flow			
	Oct	No flow	No flow	No flow)			
* Mining	Nov	2968	-	_			
. ururug	polluti	UII			I		

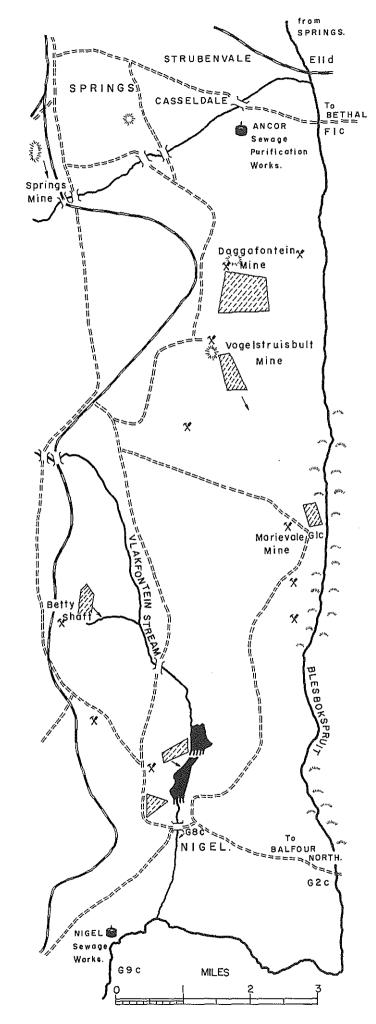


TABLE 20

(Read in conjunction with diagram 16)

Analytical and mineral load data for Blesbokspruit in Springs - Nigel area (Sections F and g)

Sampling	Year	Total	Total	Sulphates	Observed	Total excess	Accumulated
and gaug-	and	dissolved	hardness	in ppm	mineral load in	mineral load in 1b/24 hours	mineral load in 1b/24 hours
ing point	month	solids in	in ppm as CaCO ₃	as SO ₄ =	1b/24 hours	in 10/24 nours	in 10/24 nours
numbers		ppm	as caco ₃				
	1952						
G 9c	May	3920	1357	580)	ĺ		
	Aug	4342	1788	1645)			
	Nov	3928	1461	1221)			
	1953		_	}			
	Jan	2842	1026	980)			
	Feb	2096	842	695)			
	March	1693 1654	722 641	665) 504)			
	April May	1502	664	611)			
	June	1722	754	621)			
	July	2040	→	_			
	Sept	247l	1044	-)			
	Oct	1171	-	_)			
	Nov	1695	-	- }			
	<u>1952</u>			· }			
G 2c *	May	4240 4410	1465	658)			
	Aug Nov	3139	1796 1066	1541) 927)			
	1953	ر ر در	1000	'" {			
	Jan	2530	921	801 \$			
	Feb	1818	846	784 Ś			
	March	1178	792	614)			
	April	2450	904	800)			
	May June	1836 2064	812 860	702) 789 }			
	July	2438	-				
	Sept	2068	753	- }			
	Oct Nov	1744 7458	-	- {	Flow	not record	l lad
	1952	7450		- {	1 TO#	not record	ieu
G lc *	May	3551 3171	1333 1280	567 1094			
	Aug						
	Nov 1953	2592	927	906 }			
	Jan	1980	742	682			
	Feb March	1640 1313	614 572	519 463			
	April	1313 1850	642	576)			
	May	2458	1080	951 }			
	June July	2528 2640	814	754			
	Sept	41.28	1593	- }			
	Nov	4826	-	- }			
Flc	<u>1952</u> April	3284	1260	1040			
•	May	3020	1385	1352)			
	June	3096	1375	1235			
	Aug Sept	2988 29 42	1210 1258	1034) 980)			
	Nov	1877	606	384	1		
	Nov	1832	318	-)			
	Dec 1053	2454	618	1245			
	<u>1953</u> Jan	2870	1042	1280)			
	Feb	2356	1085	1078 }			
	March	2277	1019	1020			
	April June	1139 2485	422 987	565 } 1142 }	i		
	Aug	2670	1100	815			
	Oct	3617 3727	1530 1600	- }	ļ	ļ	
	Nov	5721	1900	- '			
* Mini	ing poll	lution					
]	1	l		Į.	I	I

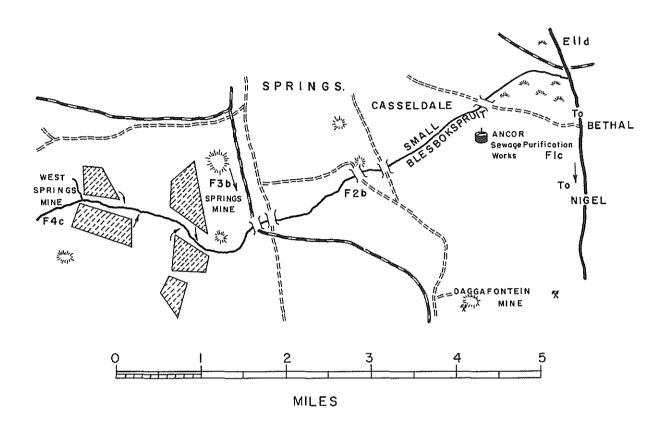
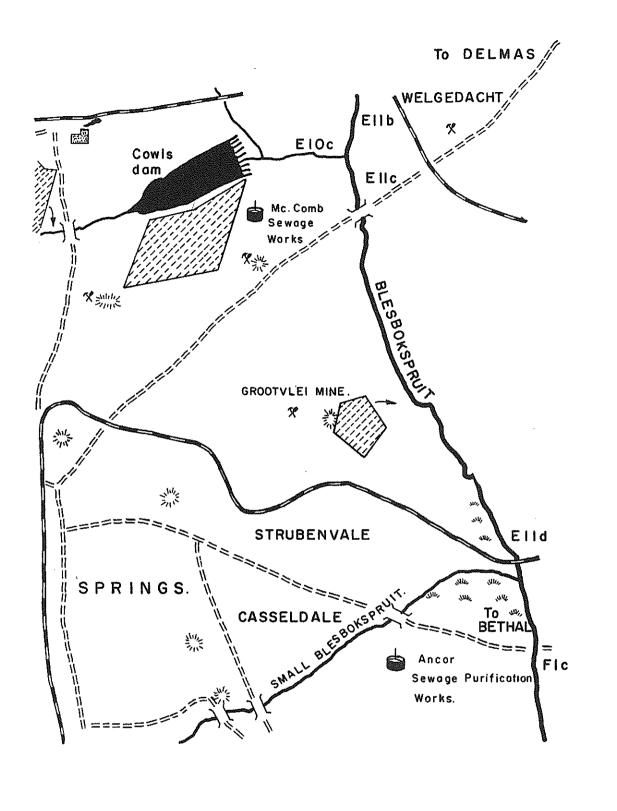



TABLE 21
(Read in conjunction with diagram 17)

Analytical and mineral load data for the Small Blesboksbruit in Springs area (Section F)

Sampling and	Year	Total dissolved	Total hardness	Sulphates	Observed mineral	Total excess	Accumulated
gauging point	and	solids in	in ppm	in ppm	load in lb/	mineral load in	mineral load
numbers	month	ppm	as CaCO_3	as 50 ₄ =	24 hours	1b/24 hours	in 1b/24 hours
	<u> 1952</u>						
F 2b	April	2274	780	1115	35055	16800	1
	May	1910	728	837	5837	Nil	
	June	3145	1245	1027	20457	Nil	
	Aug	2403	868	824	20320	Nil	
	Sept	4237	1915	718	35568	Nil	
	Nov	1238	345	268	55640	37390	
	Dec	2658	681	1396	19246	Nil	
	1953	.					
	Jan	10887	676	5210	72507	59026	
	Feb	1562	609	790	30690	17275	
	March	2100	692	1084	5395	Nil	l
	April	1723	370	916	39250	28875	
	June	4826	1175	2238	31747	Nil	
	Aug	2480	735		14077	Nil	
	Oct		840	2225	16247	Nil	
	Nov	2519				52150	
	1104	2870	1340	1330	65583	92170	
F 3b *	1952				R ₂ O ₃ in ppm		
	April	43900	3465	24580	12930	İ	
	May	41897	2010	22450	12550		
	June	50410	2490	25400	13130	Į.	Į.
	Aug	44250	3920	25530	13130		
	Sept	51234	3920	25460	13420		ŀ
	Nov	33700	2620	20080	10150		
	Dec	25486	2790	16560	8010	1	
	1953		-				
	Jan	34084	2790	21950	10750	ļ	
	Feb	33828	3070	19850	10220		1
	March	34588	3405	19260	10840		1
	April	271.34	2660	15180	6870	1	i
	June	66133	3940	40760	15260		
	Aug	83870	4250	37200	19980	•	
	Oct	54849	-	71200	18380	}	1
	1952	, ,,,,,	_	_	10,00		
F 4c *	April	2176	1002	1219		1	
r 46 "				1		1	
	May	1995	882	1132			
	June	2317	975	1260			
	Aug	2510	955	1282	1	\	1
	Sept	2367	994	1187			
	Nov	1567	480	387	ŀ]	
	Dec	2410	714	1357			ł
	<u>1953</u>						
	Jan	2088	583	258			
	Feb	1710	705	982	1	\	1
	March	2060	824	1107		ĺ	l
	April	1560	556	2030		ĺ	
	June	1858	838	1428		1	
	Aug	2395	915	1230		1	
	Oct	4048	1660	-		l l	l
* Mining p	oollutio	on))			
	1	1		İ			

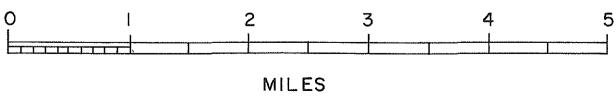


DIAGRAM 18

TABLE 22
(Read in conjunction with diagram 18)

Analytical and mineral load data for the Blesbokspruit above confluence with Small Blesbokspruit (Section E)

Sampling and	Year	Total dissolved	Total hardness	Sulphates	Observed mineral	Total excess	Accurulated
gauging point numbers	and month	solids in ppm	in ppm as Ca CO ₂	in ppm as SO _A =	load in 1b/ 24 hours	mineral load in lb/24 hours	mineral load in lb/24 hours
		FF	3	4			,
	<u>1952</u>	-4-5	1760				
E 11d *	April	2421	1360	1320)			
	May	2968	1310	1267)			
	June	3118	1367	1255)	ļ	}	}
	Aug	2856	1240	997)			
	Sept	2862	1241	955)			
	Nov	2794	606	335)			
	Dec	2254	970	968)			
	1953			}			
	Jan	2595	1180	1308)			
	Feb	2158	840	855)			
	March	2287	1069	1020)			
	April	1686	741	730)			
	June	2382	1045	1348)			
	Aug	2727	1085	845)			
	Oct	3758	870) -)		Ì	
	Nov	2351	900	770)			
	1952)	•		
E 11c	April	3091	1420	1341)			
	Kay	341.2	1370	1310)		ĺ	
	June	3028	1330	1200)	•		
	Aug	2919	1275	999)			
	Sept	2842	1232	910)			
	Nov	2442	706	384)			
	Dec	2055	907	925)			
	<u>1953</u>] ')			
	Jan	2655	1.040	1230)	Flow	not recorded	
	Feb	2576	1105	1077)	l		
	March	2385	1059	1020)			
	April	2286	1019	1010)			
	June	2630	1070	· 1356)			
	Aug	2682	1100	845)			
	0ct	2824	1050	- 1	į	ţ	}
	1952	-		1 (
E 11b	April)		1 1			
	Hay	}		l ś			
	June) No flow		1 5			
	Aug	 }		1 1			
	Sept	\}		1 1	ł		
	Nov)		1 (Ì	
	Dec	518	40	Nil (
	1953 Ton	\		1 (
	Jan) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		[
	Feb) No flow		{			
	March	1	45	1 (]		
	April	244	45	14)	1		
	June	K	,	1)			
	Aug) No flow		}			
	0ct	/		Ι,			
* Mining p	ollutic	on				Į	
	1]				

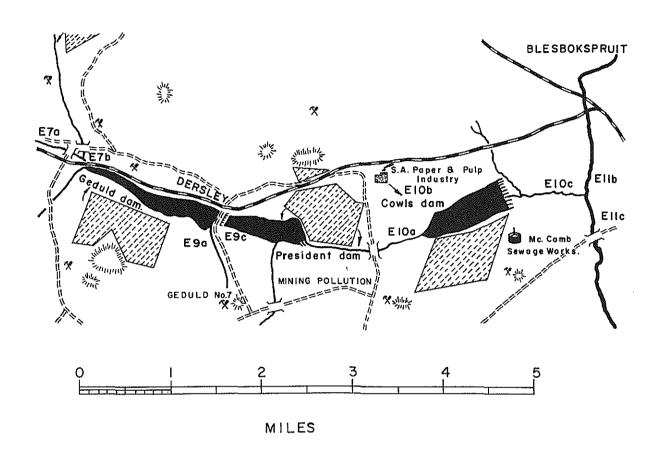


TABLE 23
(Read in conjunction with diagram 19)

Analytical and mineral load data for the Geduld and Cowl's dams (Section E)

Jampling and	Year	Total dissolved	Total hardness	Sulphates	Observed mineral	Total excess	Accumulated
cauging point numbers	and month	solids in ppm	in ppm as CaCO ₂	in ppm as SO _A =	load in 1b/ 24 hours	mineral load in 1b/24 hours	mineral load in 1b/24 hours
		PPm	3	23 504-	24 76015	III 10/24 110013	10/24 70033
E 10e	See	Figure 12					
	<u>1952</u>	l . .	_	,			
E 10b	April	1984	Nil	521)			
	Hay	3410	114	580)	ļ	Į	ļ
	June	2140	722	415)			
	Aug	2447	880	432)			
	Sept	2534	1005	273)			
	Nov	2942	1265	781)			
!	Dec	2550	904	502)			
	1953)			
	Jan	2562	910	484)			
	Feb	2666	870	425)	ļ	ļ	ļ
	March	2854	970	465)			
	April	5715	2460	494)			
	June	4390	2305	732			
	Aug	3437	935	551)			
	Oct	3212	1260				
	1952	7616	1200	- }			
E 10a *	April	2202	3.403	1770 (
2 10a		3323	1401	1770)	ļ	ľ	
	May	2430	1150	1362)			
	June	2916	1340	1642)			
	Aug	3140	1255	1878)			
	Sept	2992	1360	1784)			
	Nov	2456	1160	560)			
	Dec	3152	1200	1972 }	Flow not	recorded	
	1953			}			
	Jan	2306	868	1485)		1	1
	Feb	2476	1120	1450)			
	Auren	2303	831	1490)			
	April	2888	1070	1592)			
	June	2638	1200	1901)			
	Aug	2911	1180	1767)			
	0ct	1584	1510	_)			1
E 9d	See	Figure 11)			
	1952	l ')	1	}	} .
E 92 *	April	2800	1580	1402)			
	May	2753	1590	1568)			
	June	2637	1690	1510)			
	Aug	2697	1580	1483)			
	Sept	2577	1582	1484)			
	Nov	2473	1370	1297)			
	Dec	?844	1690	1704)			Į
'	1953		·	Ś			
	Jun	2800	1482	1670)	-	1	į
	Feb	3140	1580	1578)		ł	ŀ
	Karen	3130	1980	1930)			
	April	3569	2170	2080)			
	June	2693	1300	1823)			
	Aug	3180					
		i e	1920	1884)		ļ	
	Oct	2910	1700	- /			
* Mining po	1 .7 7 5 5 6 4 - 5 5	I				1	ļ
ututug po	TRETON		Ì	1	I	Ì	I

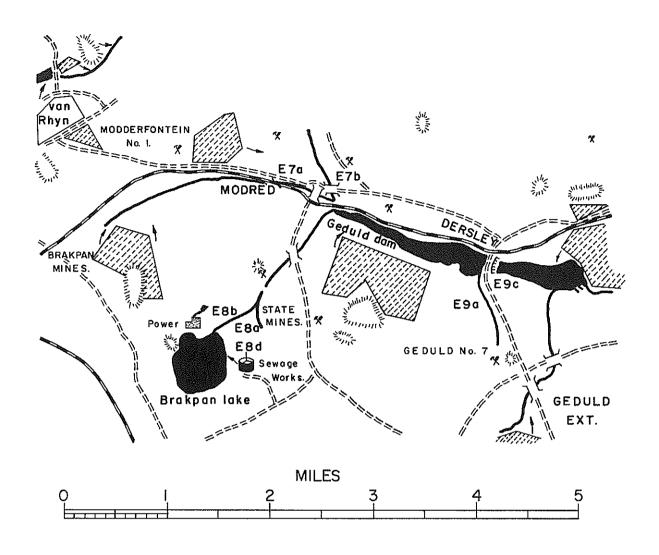


TABLE..24

(Read in conjunction with diagram 20)

Analytical and mineral load data for the southern and western streams entering Geduld dam (Section E)

Sampling and gauging point numbers	Year and month	Total dissolved solids in ppm	Total hardness in ppm as CaCO ₂	Sulphates in ppm	Observed mineral load in 1b/ 24 hours	Total excess mineral load in 1b/24 hours	Accumulated mineral load in 1b/24 hours
TURBETS		bbte	50003	as SO ₄ =	24 hours	16/24 Hours	16/24 Hours
E 8 a	<u>1952</u> March	500	_	69			
1 0 a	March	600	204	164			
	April	1200	346	329	23900	21910	-
	June	2200	228	152	11820	11282	
	July	1400	850	411	7550	7012	
	Sept. Oct	1000 400	350	209	6250 1805	5526	•
	Dec	610	154	139 181	13780	1353 11511	
	1953				25,100		
	Jan	790	295	329	3390	3013	Í
	Jan	1580	690	625	4760	4459	
	Feb	600	300	164	4842	4761	
	Harch	350		123	2185	1561	
	Hay	1600	1040	699	7230	677B]
	July July	1720 1680	748 770	715 885	3330 3250	3136 3056	
	Oct	1179	585	30,	3250 2282	3056 2088	
	Nov	600	-	205	1162	968	ļ
	<u> 1952</u>	·					
E 8b	March	No flow					
	April	1300	310	341.)	į į		
	June	Y 63	-	!			
	July) Sept)	No flow		!			
	Oct)			!			
	Dec	700	141	111)			
	<u>1953</u> Jen)		,)	'		
)			
	Feb)	V- 61					
	March) May	No flow					
	July)	ì	l '	{			
	Oct	764	215	_			
	Nov	No flow	·	}	Flow not	recorded	
	<u> 1952</u>			. }		1	
E 8d	March	380	102	66)			
	April	400	130	82) 47)			
	June July	474 490	140 312	181			
	Sept	500	132	41)			
	Oct	400	-20	29			
	Dec	610	234	172)			
	<u>1953</u>		***	}			
	Jan	524 530	216 155	98) 123))		
	Jan Jan	530	130	82			
	Oct	361	130				
	1952	,		'		i	
E 7a	Feb	4055 7100	1160 1520	2740 1640			
	March	7100 4900	1520 1470	1640 3100	268000 79200	> 264230 77585	
	April June	5500	1400	3144)	13200	11,00	
	July	5000	1392	2552			
	Sept	7300	-	2959) 3083)			
	Oct	5800	-	3083 }			
	Dec	2210	500	773			
	1953 Jan	5730	1200	1728	Gause unre	l :liable due to	l silting
	Jan	7530	1300	3763	44460 01116		
	Jan	-	1600	3901)			
•	Feb	6300	3900	2301)		1	
	liarch	5550	2800	3041)	İ		
	May	7000	3500	2466) 1981)			
	July	מוסק ו					
	July July	7010 8460	1500 1400		į		
	July July Oct Nov			1880 }	52800	52316	

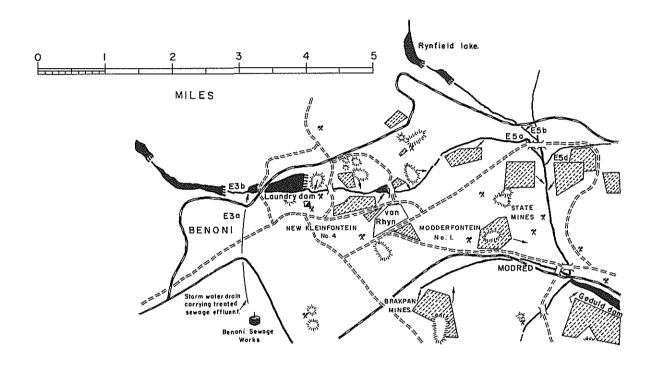


TABLE 25
(Read in conjunction with diagram 21)

Analytical and mineral load data for the northern stream entering the Geduld dam (Section E)

Sampling and	Year	Total dissolved	Total hardness	Sulphates	Observed mineral	Total excess	Accumulated
gauging point	and	solids in	in ppm as	in ppm	load in lb/	mineral load in	mineral load in
numbers	month	ppm	Caco	as S0 ₄ =	24 hours	1b/24 hours	1b/24 hours
	1952				,		
E 7b	Feb	2547	1070	1820)			}
	March	3340	950	1561)			ļ
	April	8660	1090	2400)			
	June	9300	1450	2774			}
	July	4500	1588	2756)	•		
	Sept	_	1890	2013)			ŀ
	Oct	3400	_	1150)	}		ì
	Dec	1710	450	756)			l
	1953			.			
	Jan	1850	1300	1189)	Gauge silte	ď	<u> </u>
	Jan	6150		2139)	1	•	
	Jan	6080	2200	2929			
	Feb	2900	1900	1685)	\		
-	March	5140	3900	2959)			
	May	4400	2100	- }			
	July	6700	2000	1471)			
	July	2880	1200	871			
	Oct	4381	1760	011	304100	297150	•
	Nov	1400	7100	673	153200	149700	
	1952	1400	_	(10)	155200	149700	
E 5 d	April	2140	1260	1250			
- / "	May	1594	820	745	3780	3543	
	Sept	1700	930	1075	3480	3543 3276	
	1953		-		_	·	
	Jan	1594	1010	1090)	Gauge out	of order	
	March	2030	1040	860)	-	,	[
	May	1631	1175	970	3340	3136	ļ
n er.	<u>1952</u>	***	200	1 300 \			i
E 5b	May	366	136	109)			
	Sept	2328	1282	1223			
	Remainder	_		1 ?			
	of 1952	Dr]			
	1953	Dr					,
E 5a	<u>1952</u>	Dr	. д] }			ļ
	1953)			
	Jan	1024	610	640)	ļ		1
	Remainder			}			
	of 1953	Dr	У	()			Ì
	1952	[()		}	
ЕЗа	April	919	360	71)	Flow not	maandad	
	Мау	691	7	,)	ETOM NOT	Tacoldar	
	Sept	346	144	39)	}		ì
	1953)			
	Jan	288	120	43)			
	March	648	_	43)	,		ì
	May	619	222	51)			
	1952]		<u> </u>			1
ЕЗЪ	April	208	90	28)	•]
- 	May	265	60	65)	ł		Ī
	1953		, 00	~ {			
	Jan	140	68	-62)	1		1
	J				1	I	ì
	March	246	110	ไ ถ่าไ	1	Į.	
	March May	246 128	110 75	61)			

TABLE 26

Dissolved Mineral Load Data

Klip River at Verseniging (Point AA4C)

(Tons per 24 hours)

Dissolved		Dry seas	on*	Rainy season			
mineral load	Max.	Min.	Av.	Max.	Min.	Av.	
Observed	120	12	65 (1952) 70 (1953)	4470	150	1020	
Accumulated	Nil	Nil	Nil	4025	70	860	
Regular effluent discharge	105	10	50 (1952) 65 (1953)	82	50	60	
Total excess	105	10	50 (1952) 65 (1953)	4080	135	1080	

^{*} Figures recorded during wet period in July 1952 not considered.

TABLE 27

(Tons per 24 hours)

	Klip	River	below conf	luence	(AA)	(c))	Klip	River	above conf	luence	(AA 1	(a))	Natal	Sprui	t before		uence _(b)_)	
Dissolved Mineral load		Dry se	ason*	Rai	ny sea	son		Dry se	ason*	Rai	iny sea	son		Dry se	ason*	Rai	ny sea	.son
	Max.	Min.	Aver.	Max.	Min.	Aver.	Max.	Min.	Aver.	Max.	Min.	Aver.	Max.	Min.	Aver.	Max.	Min.	Aver.
Observed	150	14	90(1952) 80(1953)	4400	150	1240	100	5	55(1952) 60(1953)	1270	105		70	5	2(1952) 19(1953)	950	155	-
Accumulated	Nil	Nil	-	3930	63	1030	Nil	Nil	. -	1070	40	-	Nil	Nil	· -	970	125	-
Regular effluent discharge	137	17	80(1952) 70(1953)	105	70	80	84.5	14	48(1952) 52(1953)	50.5	46	49	67	2•5	36(1952) 17(1953)	31	10	15
Total excess	137	17	80(1952) 70(1953)	4010	135	1110	84.5	14	48(1952) 52(1953)	1120	90	-	67	2.5	36(1952) 17(1953)	1000	140	_

Figures recorded during wet period in July 1952 not considered.

TABLE 28

Dissolved mineral load data for Suikerboschrand River at Vereeniging (G 18a)

(Tons per 24 hours)

Dissolved mineral		Dry s	eason *	Rainy season			
load	Max. Min. Aver.		Max.	Min.	Aver.		
Observed	20.0	Nil	6.5 (1952) 10 (1953)	2515	6.5	260	
Accumulated	Nil	Nil	Nil	2385	Nil	220	
Regular effluent discharge	15.5	Nil	4.5 (1952) 8.0 (1953)	13.5	5.5	10	
Total excess	15.5	Nil	4.5 (1952) 8.0 (1953)	2390	5.5	225	

* Recordings during wet period July 1952 not considered

TABLE 29

Dissolved mineral load data for Blesbokspruit at Heidelberg (C 15b)

(Tons per 24 hours)

Dissolved mineral	L	Dry s	eason *	Wet season			
load	Max.	Min.	áver.	Max.	Min.	Aver.	
Observed	29.5	Nil	8.0 (1952) 10.5 (1953)	603	9.5	154	
Accumulated	Nil	Nil	Nil	560	Ril	132	
Regular effluent discharge	28.5	Nil'	7.5 (1952) 9.5	17.5	9.0	12.5	
Fotal excess	28.5	Nil	7.5 (1952) 9.5 (1953)	572	9.0	144	

^{*} Recordings during wet period July 1952 not considered.

Dissolved mineral load data for Small Blesboksrruit (F 2b)

(Tons per 24 hours)

TV	Dry season *						
Dissolved mineral load	Max.	Min.	Aver.				
Observed	18	3	10,5 (1952) 10,5 (1953)				
Accumulated	Nil	Nil	Nil				
Regular effluent discharge	18	3	10 (1952) 10.5 (1953)				
Total excess	18	3	10.5 (1952) 10.5 (1953)				

^{*} Recordings during wet period July 1952 not considered.

TABLE 31

Dissolved mineral load data for Cowl's dum overflow (Tons per 24 hours)

Dissolved mineral		Dry sea	ason *	Rainy season			
load	Max. Min. Aver.		Mnx.	Min.	Av.		
Observed	85	53	61.5 (1952) 84.6 (1953)	≻450	46.5	204	
Accumulated	Nil	Nil	Nil	-363	Nil	127	
Regular effluent discharge	82	51.5	59.5 (1952) 81.5 (1953)	> 77	£4.5	69	
Total excess	82	51.5	59.5 (1952) 81.5 (1953)	.⊳434	44.5	196	

^{*} Recordings during wet period July 1952 not considered.

1. .

TABLE 32
^^^^^^^^^

Dissolved mineral load data for Geduld dam overflow (E 9c)

(Tons per 24 hours)

Dissolved mineral		Dry sea	ason *	Rainy season			
load	Max. Min. Aver.		Max.	Min.	Aver.		
Observed	44	6	9 (1952) 34.5 (1953)	1680	23.5	469	
Accumulated	Nil	Nil	Nil	1633	Nil	429	
Regular effluent discharge	42.5	45	7.5 (1952) 33.5 (1953)	37	13	27	
Total excess	42.5	45	7.5 (1952) 33.5 (1953)	1647	22.5	456	

^{*} Recordings during wet period July 1952 not considered.

TABLE 33

Relation between TDS and Aluminium sulphate dosage

TDS of Vaal River water (in ppm)	Aluminium sulphate dosage in tons per 100 million gallons
100 - 300	1.5 - 2.0
300 - 400	2.0 - 3.0
400 - 500	2.5 - 3.5
500 - 700	3.0 - 6.5

TABLE 34

Aluminium sulphate dosage data, period 17th to 28th December 1952

<u>Date</u> December 1952	TDS of Vaal River water (in ppm)	Aluminium sulphate dose (in ppm)	
17	572	17	
18	550	32	
19	559	47	
20	578	33	
21	406	29	
22	395	25	
23	483	21	
24	386	20	
25	373	19	
26	368	16	
27	357	15	
28	513	20	

TABLE 35

Data illustrating the type of relationship between TDS and cooling water make-up

TDS of intake	Daily volume of make-up (in gal)	Total daily costs * (in R)	
water (in ppm)		make - up water	Phosphate loss
150	767000	19.2	12.8
250	1400000	37.4	23.4
350	2200000	55.0	36.6
500	3833000	95.8	63.8
600	5366000	134.2	89.4
750	8943000	223.6	149.0

^{*} Cost of raw water = 2.5c per 1000 gallons.

 PO_4 content of blow-down = 10 ppm

Cost of Calgen = R200 per ton (60% PO4 content)

Illustration of the type of relationship between TDS and boiler blow-down

Daily volume of blow-down (gal)	Total daily costs*(in R)	
	Phosphate loss	Blow-down
133000	4.4	15.8
234000	7.8	29.4
346000	11.6	43.2
	of blow-down (gal) 133000 234000	Daily Volume of blow-down (gal) Phosphate loss 133000 4.4 234000 7.8

- * Costs of water to make good blow-down involve
 - (i) Cost of raw water (assume 2.5c/1000 gal)
 - (ii) Costs of softening chemicals alone taken at 10c (hardness increases ignored) i.e. water and chemical costs = 12.5c per 1000 gal - capital and operating costs not included.
 - PO₄ content of blow-down = 20 ppm

TABLE 37

Illustration of relationship between TDS and costs of demineralization materials

Cost of chemicals and de- preciation of ion-exchange material (in cent per 1000 gallons)	
1.3.55	
15.88	
18.80	
25.18	
59.95	

TABLE 3

Illustration of relationship between TDS and costs of base-exchange materials

TH of water supply (in ppm as CaCO ₃)	Cost of chemicals and depreciation of base- exchange material (in cent per 1000 gallons)
50 100 100 100 100 100 100 100 100 100 1	2.5

A control of the cont

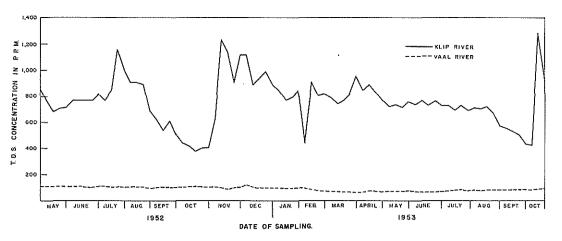


FIG. 1. COMPARISON BETWEEN THE TOTAL DISSOLVED SOLIDS CONCENTRATION OF THE KLIP RIVER AT VEREENIGING (AA4Q) AND THE VAAL RIVER AT ENGELBRECHT'S DRIFT WEIR FOR THE PERIOD MAY 1952 - OCTOBER 1953 (IN PARTS PER MILLION).

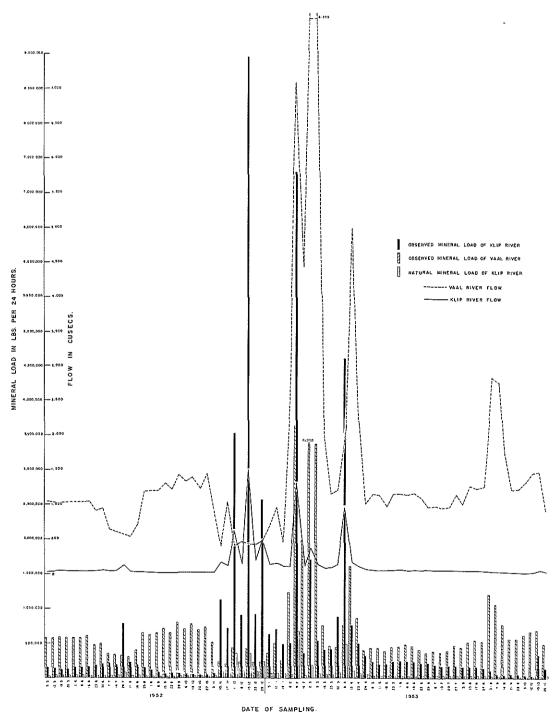


FIG. 1A. MINERAL LOAD DATA (POUNDS PER 24 HOURS). COMPARISON BETWEEN MINERAL LOAD OF KLIP RIVER AT VEREENIGING AND VAAL RIVER AT ENGELBRECHT'S DRIFT WEIR.

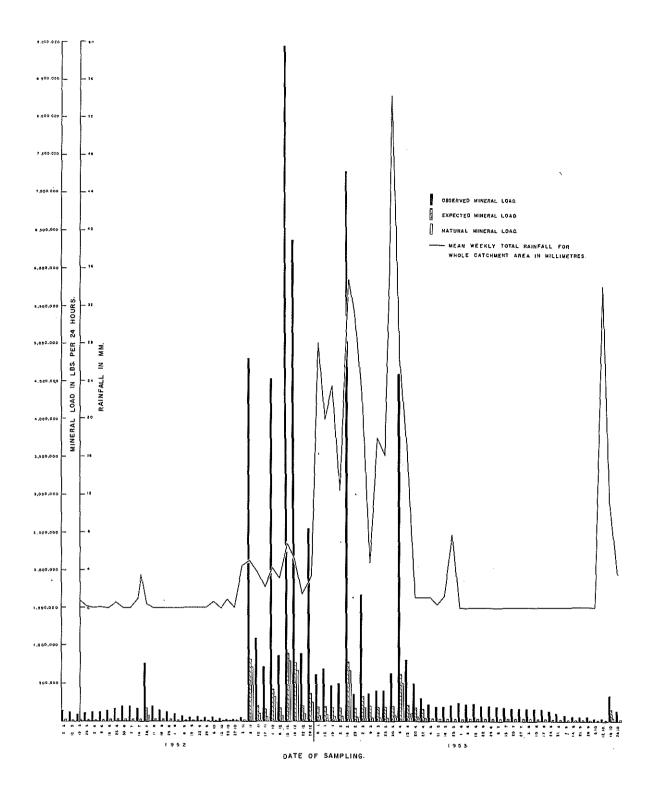


FIG. 2. MINERAL LOAD DATA (LBS. PER 24 HOURS) KLIP RIVER AT VEREENIGING ABOVE CONFLUENCE WITH VAAL RIVER SAMPLING POINT AA4C.

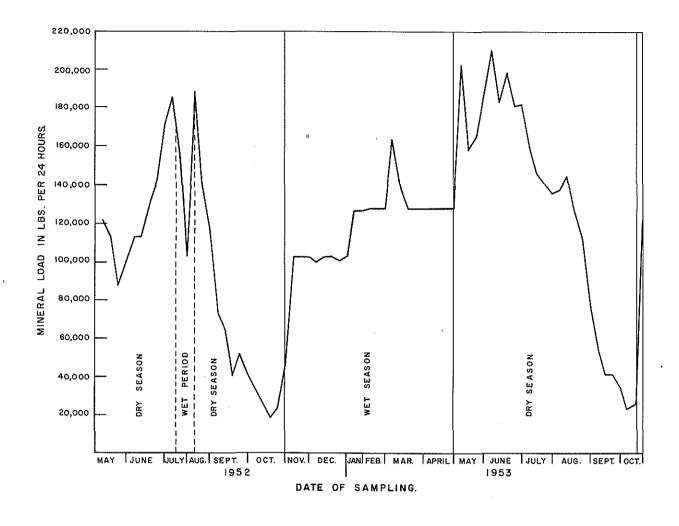


FIG. 2A. DISSOLVED MINERAL LOAD CONTRIBUTED BY REGULAR EFFLUENT DISCHARGES REACHING THE KLIP RIVER AT VEREENIGING (AA4C) (LBS. PER 24 HOURS).

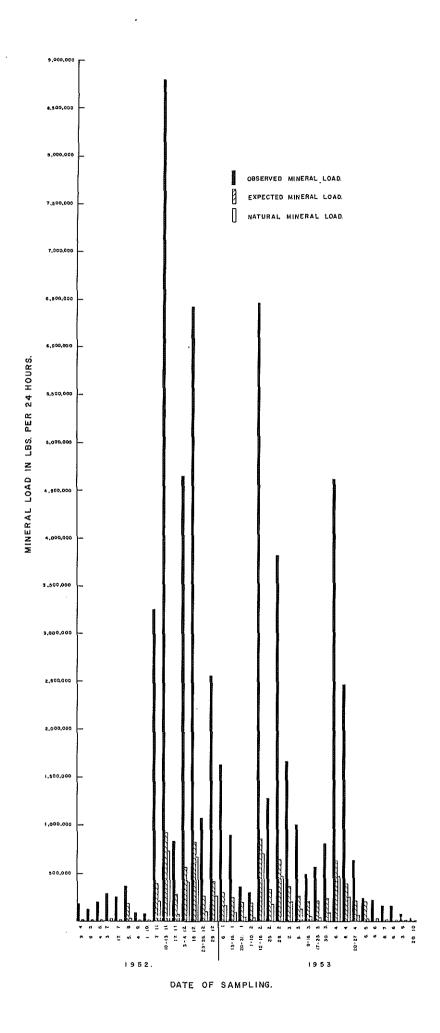


FIG. 3. MINERAL LOAD DATA (LBS. PER 24 HOURS) KLIP RIVER BELOW CONFLUENCE WITH NATALSPRUIT AAIC.

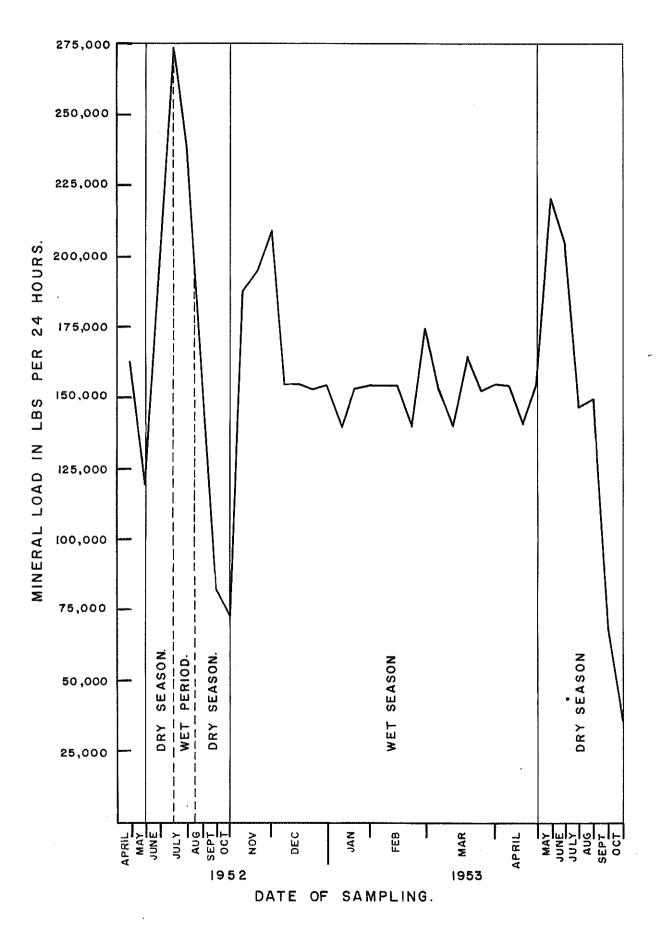


FIG. 3A. DISSOLVED MINERAL LOAD CONTRIBUTED BY REGULAR EFFLUENT DISCHARGES REACHING THE KLIP RIVER BELOW NATALSPRUIT CONFLUENCE (AA1C) (LBS., PER 24 HOURS).

Γ

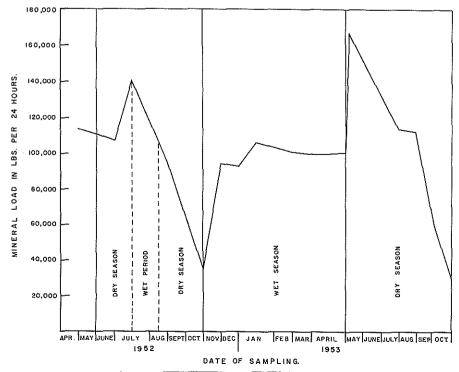
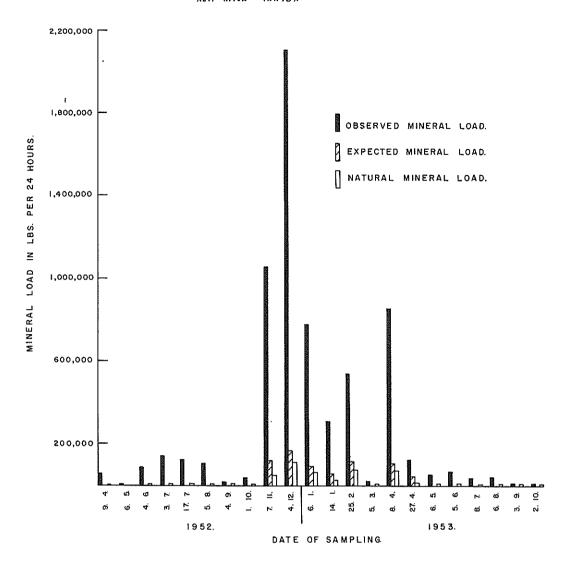



FIG. 5. MINERAL LOAD DATA (LBS. PER 24 HOURS) NATALSPRUIT BEFORE CONFLUENCE WITH KLIP RIVER (AAIb).

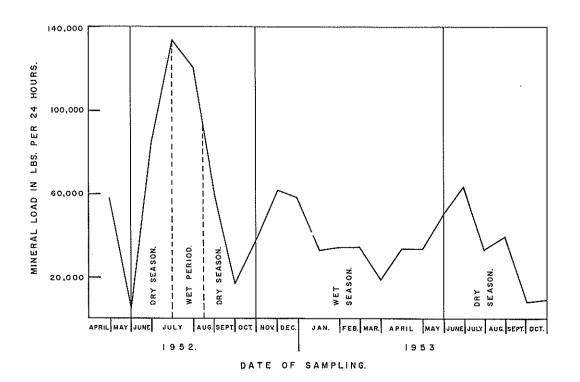


FIG 5 A. DISSOLVED MINERAL LOAD CONTRIBUTED BY REGULAR EFFLUENT DISCHARGES REACHING NATALSPRUIT BEFORE CONFLUENCE WITH KLIP RIVER (LBS. PER 24 HOURS) AA I b.

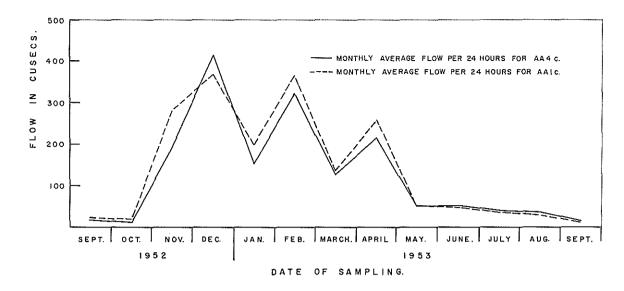


FIG. 6. COMPARISON OF FLOW DATA FOR THE KLIP RIVER AT POINTS AA 4 C & AA I C.

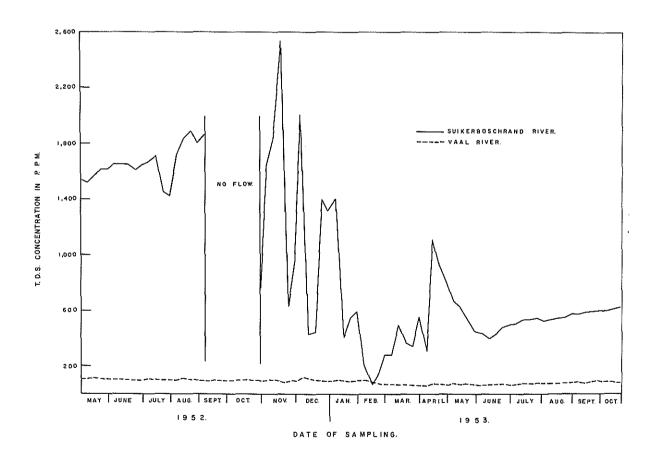


FIG. 7. COMPARISON BETWEEN TOTAL DISSOLVED SOLIDS CONCENTRATION OF SUIKERBOSCHRAND RIVER (G18A) AND VAAL RIVER AT ENGELBRECHT'S DRIFT WEIR FOR THE PERIOD MAY 1952 – OCTOBER 1953.

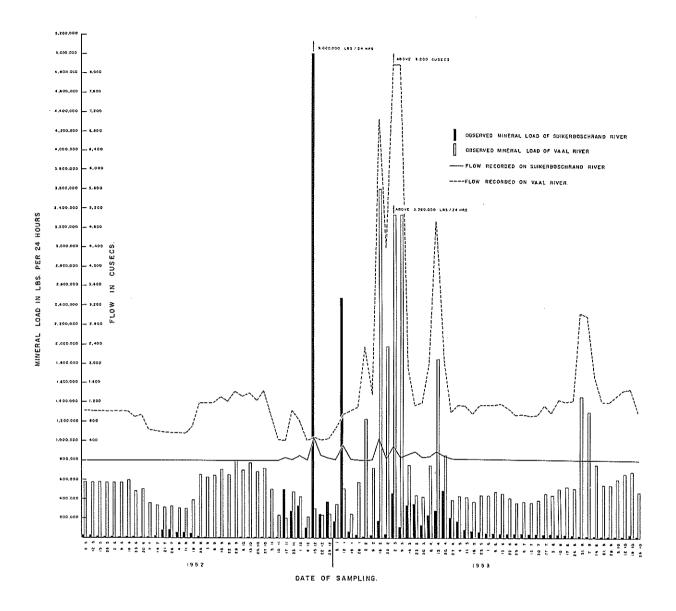


FIG. 7A. COMPARISON BETWEEN OBSERVED MINERAL LOAD AND FLOW OF SUIKERBOSCHRAND RIVER AT VEREENIGING AND VAAL RIVER AT ENGELBRECHT'S DRIFT WEIR.

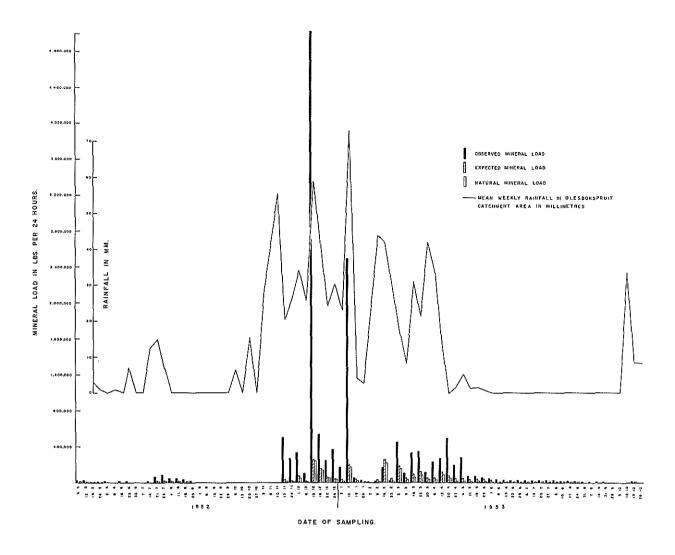


FIG. 8. MINERAL LOAD DATA FOR SUIKERBOSCHRAND RIVER BEFORE CONFLUENCE WITH VAAL RIVER AT VEREENIGING SAMPLING POINT NO. G. 18A.

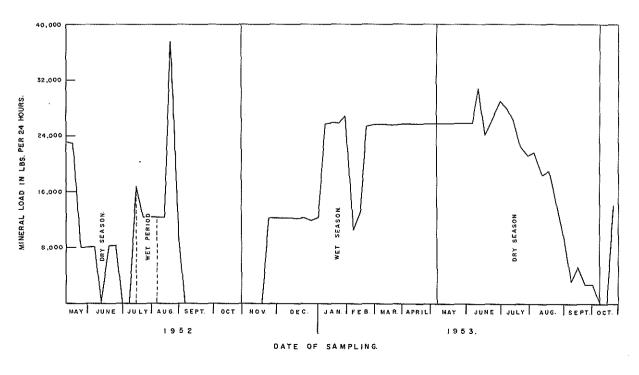
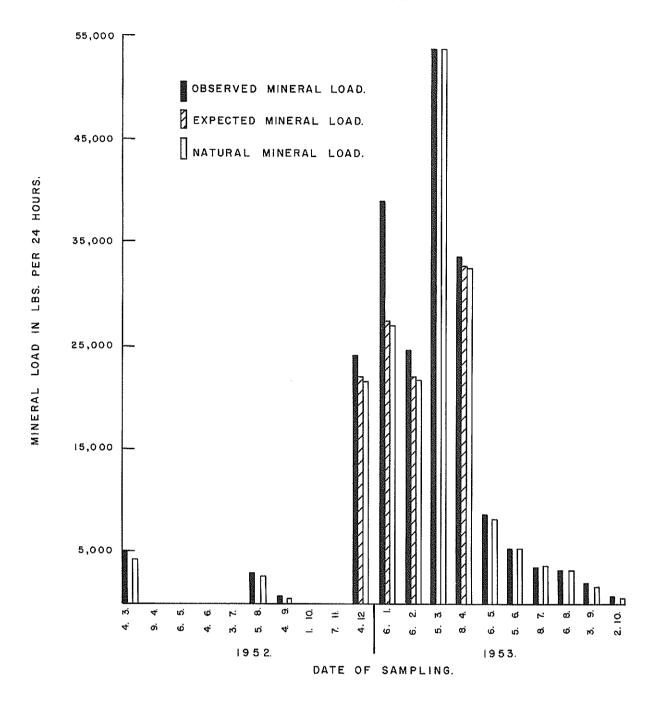



FIG. 8A. MINERAL LOAD CONTRIBUTED BY REGULAR EFFLUENT DISCHARGE REACHING SUIKERBOSCHRAND RIVER AT VEREENIGING (G18A.)

FIG. 9. MINERAL LOAD DATA FOR SUIKERBOSCHRAND RIVER BEFORE BLESBOKSPRUIT, SAMPLING POINT No. G 17b.

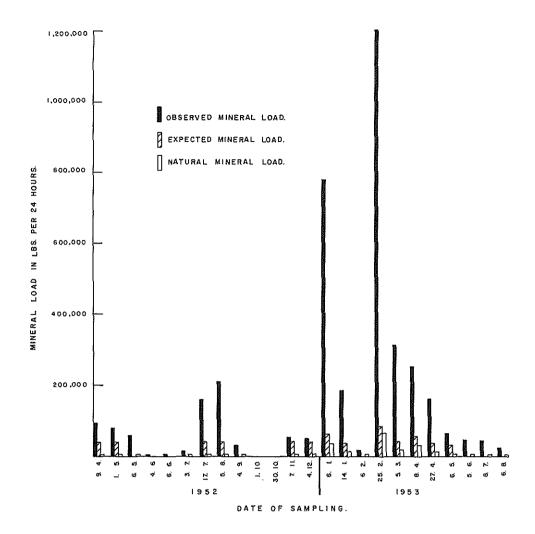
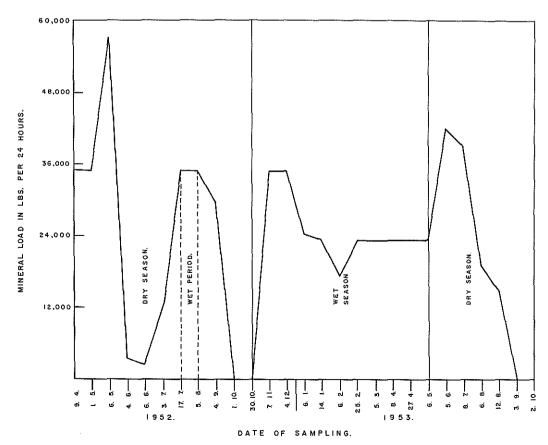



FIG 10. MINERAL LOAD DATA FOR BLESBOKSPRUIT AT HEIDELBERG. SAMPLING POINT No. G 15b.

67

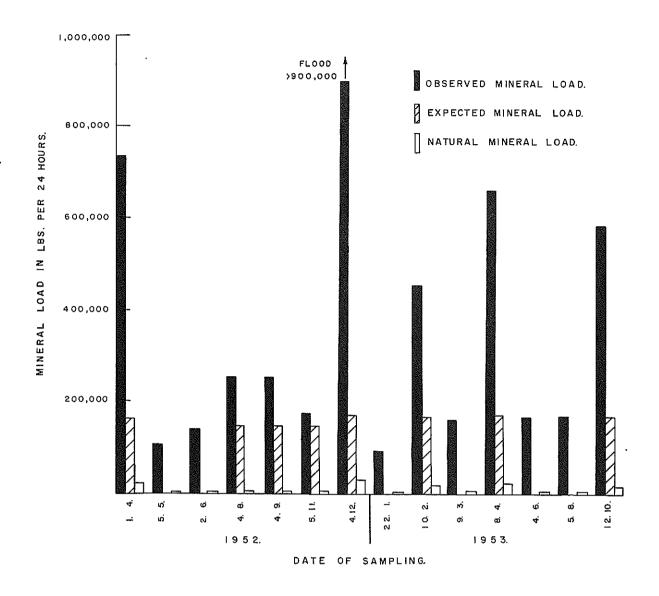


FIG. 11. MINERAL LOAD DATA FOR COWL'S DAM OVERFLOW - SAMPLING POINT ENC.

FIG. 12. MINERAL LOAD DATA FOR GEDULD DAM OVERFLOW - SAMPLING POINT EPC.

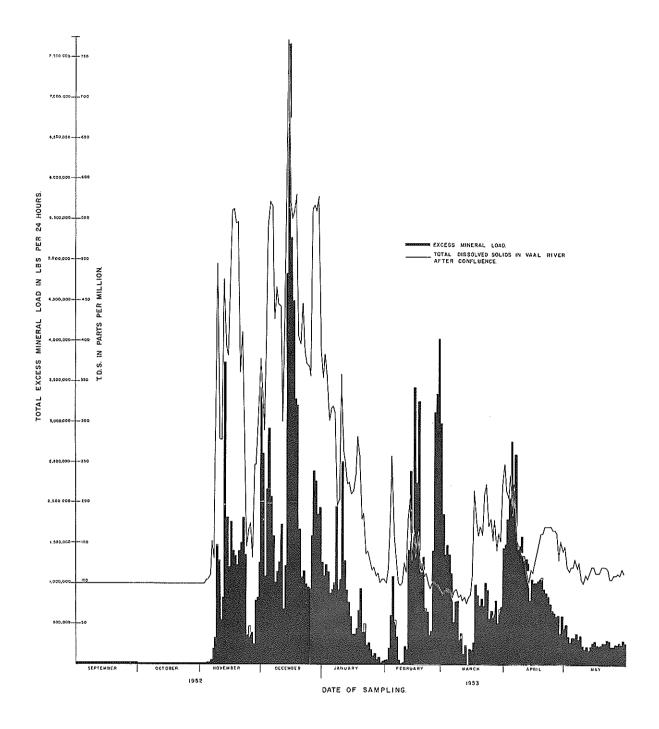


FIG. 13. TOTAL EXCESS MINERAL LOAD DISCHARGED INTO VAAL RIVER BY THE KLIP AND SUIKERBOSCHRAND RIVER SYSTEMS.

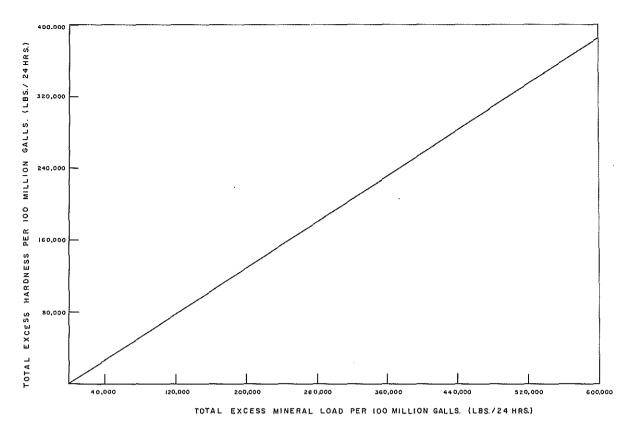


FIG. 14. RELATION BETWEEN TOTAL EXCESS MINERAL LOAD & TOTAL EXCESS HARDNESS CONTRIB. BY KLIP & SUIKERBOSCHRAND RIVERS TO THE VAAL RIVER.

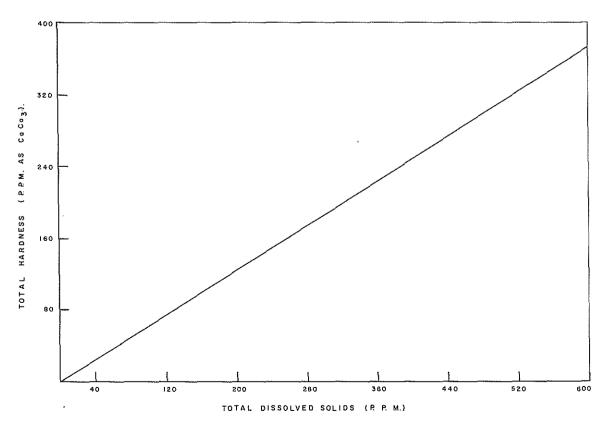
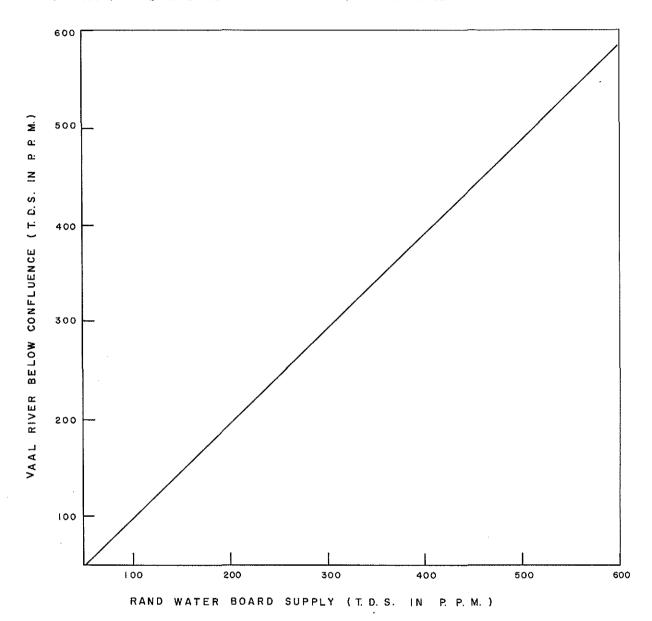



FIG. 15 RELATION BETWEEN TOTAL DISSOLVED SOLIDS & TOTAL HARDNESS OF WAAL RIVER WATER.

FIG. 16. RELATION BETWEEN TOTAL DISSOLVED SOLIDS OF VAAL RIVER BELOW CONFLUENCE WITH KLIP & SUIKERBOSCHRAND RIVERS & TREATED WATER SUPPLIED BY RAND WATER BOARD TO THE WITWATERSRAND.

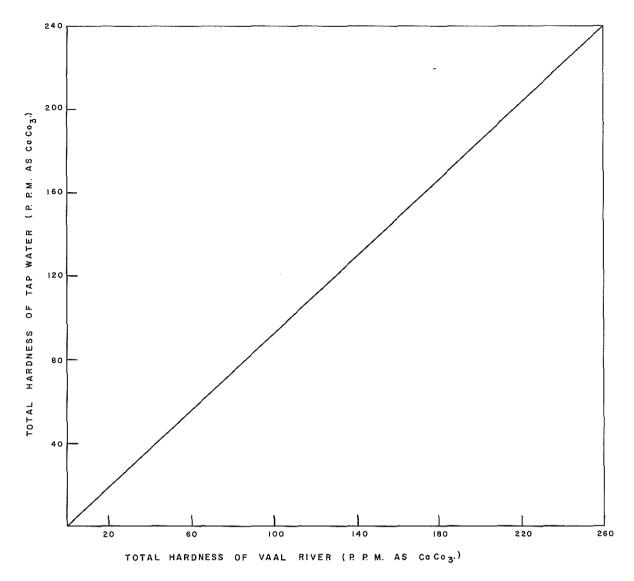


FIG. 17. RELATION BETWEEN TOTAL HARDNESS OF WAAL RIVER & TOTAL HARDNESS OF WATER SUPPLIED TO THE WITWATERSRAND.

€4

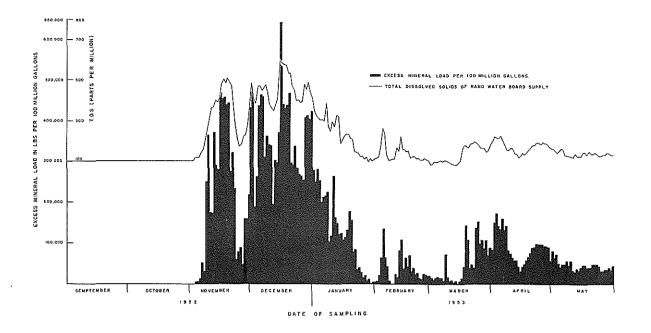


FIG. 18. EXCESS MINERAL LOAD PER 100 MILLION GALLONS OF VAAL RIVER WATER SUPPLIED TO THE WITWATERSRAND.

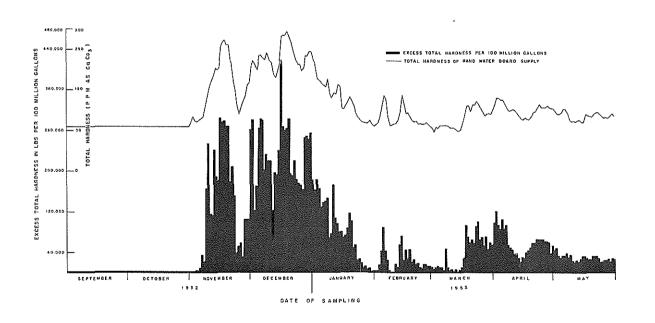


FIG. 19. EXCESS TOTAL HARDNESS PER 100 MILLION GALLONS OF VAAL RIVER WATER SUPPLIED TO THE WITWATERSRAND.

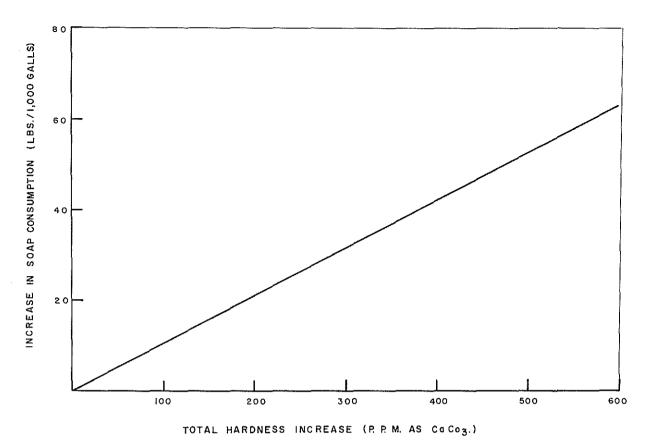
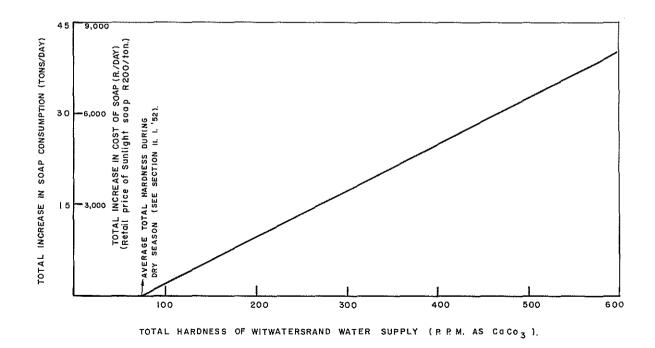
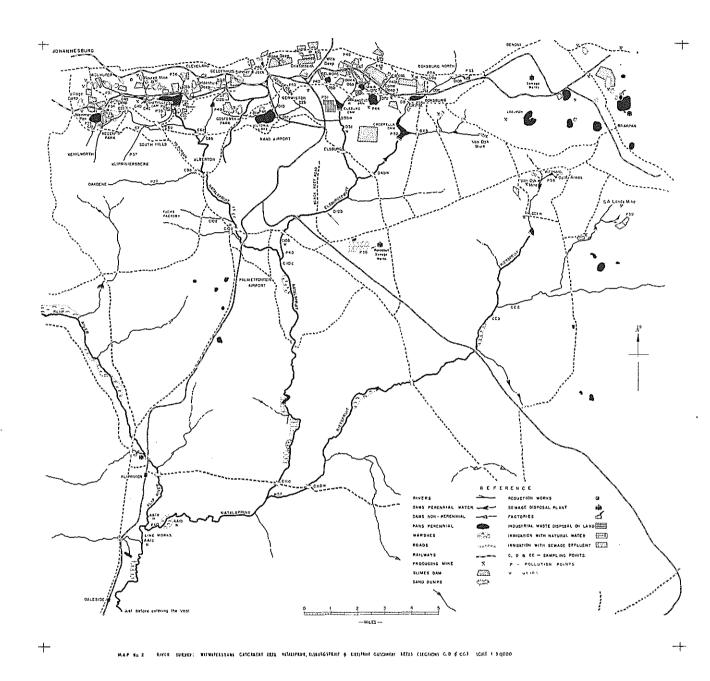
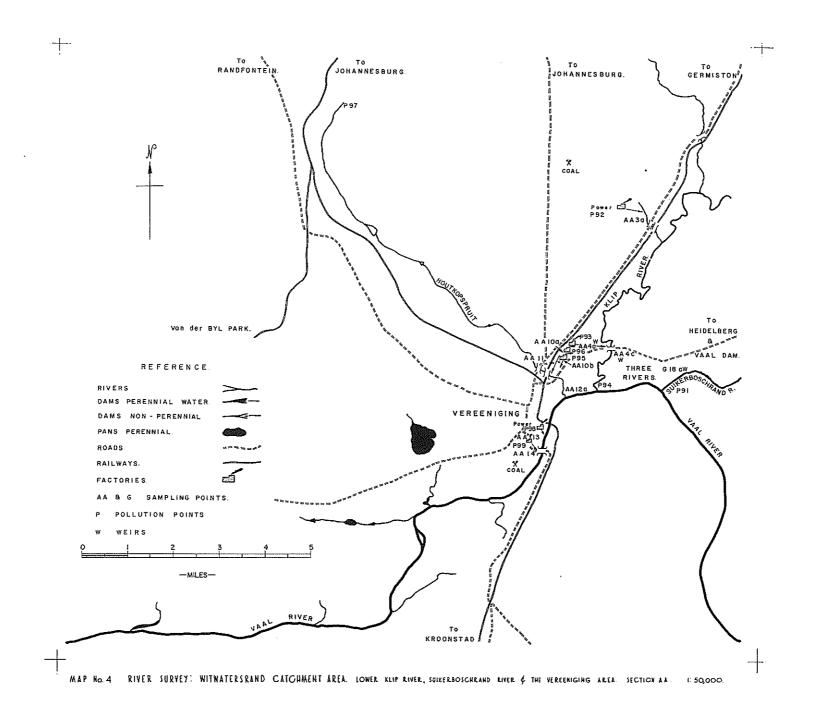


FIG. 20 RELATION BETWEEN INCREASE IN TOTAL HARDNESS OF WATER & INCREASE IN SOAP CONSUMPTION.


FIG 21. THE EFFECT OF INCREASE IN TOTAL HARDNESS OF THE RAND WATER SUPPLY ON SOAP CONSUMPTION FOR THE WHOLE WITWATERSRAND.

MAP No. 1. RIVER SURVEY. WITWATERSRAND CATCHMENT AREA. OPPER RELIP RIVER & RELIPSPROIT CATCHMENT AREAS SECTIONS A.G. B. 5: 50,000.

ï

6

TO STANDERTON. DELMAS TRANSVAJ BALFOUR MAP 3 BECHUANALAND PROTECTORATE. KEMPTON YAAL DAM JOHANNESBURG. ORANGE FREE STATE. SASOLBURG. GRASMERE KRUGERSDORP RANDFONTEIN TRANSVAAL POTCHEFSTROOM

MARP No. 5 KEY MAR TO MARS 1,2,3 \$4 SUOWING THE DIFFERENT SECTIONS DISCUSSED IN THE TEXT SCALE: 1: 250,000.

INSET: MAR OF TRANSPAAL SHOWING THE WITHWITERSRAND CATCHMENT AREA (SHAPED) SCALE 1:4,000,000.

85